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A coupled Eulerian/Lagrangian method is presented for the reduction of numerical
diffusion observed in solutions of three-dimensional rotational flows using standard Eu-
lerian finite-volume time-marching procedures. A Lagrangian particle tracking method
using particle markers is added to the Eulerian time-marching procedure and provides
a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate
the Lagrangian state-vector along the particles trajectories. The Lagrangian correction
technique does not require any a-priori information on the structure or position of the
vortical regions. While the Eulerian solution ensures the conservation of mass and sets
the pressure field, the particle markers, used as ‘accuracy boosters’, take advantage of
the accurate convection description of the Lagrangian solution and enhance the vorticity
and entropy capturing capabilities of standard Eulerian finite-volume methods.

The combined solution procedure is tested in several applications. The convection of
a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation
test case. The other test cases concern steady incompressible flow calculations and
include the preservation of a turbulent inlet velocity profile, the swirling flow in a pipe,
the constant stagnation pressure flow and secondary flow calculations in bends. The
last application deals with the external flow past a wing with emphasis on the trailing
vortex solution.

The improvement due to the addition of the Lagrangian correction technique is mea-
sured by comparison with analytical solutions when available or with Eulerian solutions
on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substan-
tially lower grid resolution requirements than the standard Eulerian scheme for a given
solution accuracy.
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Chapter 1

Introduction

1.1 Statement of the problem

Over the last few years, the improvement in CPU and memory capabilities of modern
supercomputers has rendered practical the solution of flow problems of more and more
complex nature. However, the efficient numerical treatment of flow non-homogeneities,
such as vortex wakes or tip vortex roll-up, embedded in an otherwise smooth background
flow field remains a challenging field of study. In many practical applications, the
prediction of the strength and the position of the vortical regions reveals to be of primary
importance. For instance, the flow around an helicopter rotor blade presents a case of
strong interaction between the shed vortices due to one blade and the following blade.
The prediction of the resulting load variations requires the accurate solution of the shed
vortices, of their trajectories and of the subsequent interaction phenomenon. Another
example is the prediction of the secondary flow through a bend with a pump attached
at the bend exit. The location and strength of the secondary vortex, created by the
tilting and stretching of the inlet boundary-layer vorticity, must be solved accurately,
as a possible noise source and a performance loss may result from the impingement of

the secondary vortex on the rotating blades.

Vortex-sheets, secondary flows, or vortex roll-up phenomena are all characterized

by transverse length scales differing by orders of magnitude from the length scale of
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the supporting flow field (the transverse length scale of trailing vortices has been found
experimentally to be as low as 5% of the airfoil chord [57]). Since the solution of
these vortical features h‘as often to cover a convection length much higher than their
intrinsic length scale, the global prediction of vortex-dominated flows proves to be highly
sensitive to small local errors. This makes these flow features difficult to be captured

by finite-difference methods.

1.2 Existing approaches

Incompressible vortex methods and potential methods with fitted vortex sheets are
not susceptible to the numerical diffusion. Examples of incompressible vortex methods,
using Biot-Savart law to compute the velocity field, include the method used by Leonard
(41] where the flow vorticity is modeled as a collection of a few isolated vortex-tubes
with a computational element assigned to each vortex tube and Knio’s study [38] where
a three-dimensional vortex scheme is based on the transport of vorticity and material
elements. Additionally, gradients of the scalar field are transported and the scalar field

itself is recovered using Biot-Savart law.

Potential methods presuppose some a priori knowledge (either from a known solution
or from empirical data) on the vortex structure or position, since potential methods
do not ‘capture’ embedded vorticity as part of the solution. This limitation becomes
especially acute when solving complex flow problems where an a priori information is
not always available. Scully [64] and Miller [44] have used a Biot-Savart formulation for
an incompressible flow solution of an helicopter rotor wake. Hassan [25] used the Euler
equations in an implicit scheme and modeled the blade-vortex interaction by computing
the vortex-induced velocities following Biot-Savart law. Steinhoff [71, 72] presented an
alternative method for an aircraft configuration, where the strength, position and shape
of the vortex sheet were calculated as part of the solution. The internal structure of the

wake was, however, still to be specified. Ramachandran [54] used a potential method
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with embedded vortex wakes for the compressible flow solution of a rotor wake. The
body was included in the calculation similarly as the rotor wake as a vorticity sheet

whose strength is determined iteratively.

The use of an Euler or a Navier-Stokes solver presents the advantage that the em-
bedded vorticity is captured as part of the solution. Poor solution representation is,
however, a common feature of Eulerian and Navier-Stokes solvers in regions of high gra-
dients. More precisely, the errors introduced by discretizing the equations of motion can
be expressed in terms of dissipation and dispersion phenomena. In addition, rounding
errors are introduced randomly in the solution. The dissipation expresses the fact that
the finite difference model loses energy as the time progresses. Because numerical dis-
sipation can be advantageous by counteracting unwanted instabilities and oscillations
(for example saw-tooth modes), it is added to non-dissipative formulae. The disper-
sion errors correspond to the decay of a wave form into separate spurious oscillations
and always occur with finite-difference formulae since their dispersion relation is always

non-linear.

Because most common second-order accurate finite-difference schemes will smear
and distort regions of high gradients, corresponding grid clustering seems the obvious
approach. Homfever, depending on the flow topology, this procedure could reveal to
be prohibitively expensive. For example, the solution of the flow around helicopter
blades involves the prediction of the interaction between the tip vortex from a blade
and the following blade. Because the resulting flow presents vortex regions of high
extent and is highly non-homogeneous, standard clustering of the grid would lead to
high computational cost. As Drela [20] reported, a suitably overall fine grid would imply
~ 260 billion points for a rotor wake solution. The sensitivity of the solution to the grid

coarseness has, therefore, prompted several studies.
Selective refinement of the grid is used by Lohner [42] in an adaptive algorithm

in two dimensions. In three dimensions, however, the algorithm would undoubtedly

present much complexity. Nakahashi [46] uses a 2-D solution adaptive structured grid
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method based on variational principles and spring analogies. A multigrid solution of
the Euler equations using an implicit scheme has been performed by Jameson [37) and
has proven effective for CPU reduction in two-dimensional applications. The three-
dimensional application would certainly prove to be more involved. Landsberg (40
has studied vortex capturing using adaptation and a three-dimensional finite-element
solver. Also Schmatz [63] presented a two-dimensional zonal solution to model the weak
or strong viscous/inviscid interactions in subsonic and transonic flows. Powell [49] used
an adaptive mesh procedure working on an unstructured mesh for solving the conical
Euler equations for leading-edge vortex flows. In this respect, unstructured grids present
a strong advantage over structured grids because of the flexibility of adding new grid

resolution in defined areas.

An alternative to grid refinement is to use a high-order accurate scheme, a method
used by Rai [53] who presented a fifth-order upwind-biased scheme in a blade/vortex
interaction problem. Steger [70] used an implicit fourth-order accurate scheme for the
computation of vortex wakes. However, the advantage of using these high-order accurate
schemes, with suitable clustering of points in the regions of high gradients, is still linked
to grid smoothness (more difficult to obtain in three dimensions) and were demonstrated

on grids prohibitively fine for complex three-dimensional applications.

Perturbation methods, instead, rely on a known! flow solution in some areas of the
computational domain such as to correct the numerical diffusion encountered in the
basic finite-difference flow solution. Roberts [57, 56] applied this methodology, first
introduced by Chow [15] to the rotor wake and blade/vortex interaction problems by
coupling the Euler equations to a free-wake model of the rotary wing wake. The main
drawback here is the need for a known solution which limits the correction method
to regions of simple behavior (the correction can not be performed where the vortex
impinges on the airfoil for instance). In a similar approach, Srinivasan (69, 68] uses the

2-D thin-layer Navier-Stokes equations and a prescribed vortex for computing the flow

! This is done from an analytic solution if available or from a previously computed high resclution
local solution of the flow field.
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over rotor blades.

The ‘Cloud in Cell’ technique, first introduced by Christiansen [16] and then trans-
formed by Baker [5] for a 2-D incompressible inviscid fluid, uses an area averaged vor-
ticity distribution from markers in cells onto grid nodes where Poisson’s equation is
solved. The circulation distribution must, however, be known at each marker and a
three-dimensional solution is not straightforward. Also Basuki [7] used the inviscid
‘Cloud in Cell’ technique with vortices tracked though the grid on which the velocity is
found by a finite-difference method. Poor resolution of the velocity field was, however,

reported.

The advantages of spectral methods are accuracy, ease of implementation and the
low number of collocation points required for a computation when compared to the dis-
cretization used in finite-difference methods. However, they lead to large matrices for
more than one non-periodical direction (which is the case for the flow cases treated here)
and are difficult to apply in computational domains of complex shapes. Also, no discon-
tinuity (as a shock, for example) is allowed as part of the solution. Furthermore they

are more time restrictive than finite-difference methods for unsteady flow calculations.

1.3 Present approach

As mentioned in the previous section, the Euler or Navier-Stokes equations present
the advantage of directly capturing embedded vorticity, when compared to potential
methods with fitted sheets. For example, as reported by Murman [45] and others [50, 9],
the use of the Euler equations provides a good tool for a study of flows around wings
enabling the study of the leading-edge vortex. The capturing capabilities of Euler
or Navier-Stokes solvers are, nevertheless, limited by grid resolution issues. As an
alternative to the methods dealing with this problem, this thesis presents a technique

for substantially improving the capturing capabilities of time-marching Eulerian solvers.
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This method does not require the knowledge of an a priori solution, grid refinement or

the use of highe-r-order schemes.

The objective of this research is then to construct an alternative solution procedure to
reduce the numerical diffusion observed in standard Eulerian time-marching calculations
and to demonstrate the feasibility, efficiency and flexibility of the method by application
to different flow problems. These include three-dimensional steady, unsteady, internal as
well as compressible and incompressible inviscid flow cases. Furthermore, the extension
of the method to include the Navier-Stokes equations (not performed in the frame of

this thesis) is judged to be straightforward.

The present method consists in the addition of a Lagrangian particle tracking so-
lution to a standard Eulerian solution in order to enhance its vorticity and entropy
capturing capabilities. This method is based on the approach of Drela [20] in two di-
mensions and is here extended to include three-dimensional flow cases. The combination
of the Eulerian and Lagrangian solvers takes advantage of both the accurate convection
description of the Lagrangian technique and the ‘elliptic’ representation of the Eulerian
solution which enforces the mass conservation and sets the pressure field. Briefly, the
Lagrangian solution is based on particle markers carrying vorticity and entropy, and
convecting with the local flow through the Eulerian grid. The Eulerian solver is used
to conserve mass and to provide the source terms required for the Lagrangian time
integration. In turn, since the Lagrangian solution is immune to the numerical diffu-
sion process occurring in the Eulerian solver, it accurately captures the convection of
vorticity and entropy. This information is then used to locally correct the Eulerian so-
lution and to reduce its numerical diffusion errors. Each Lagrangian marker influences
the Eulerian solution only locally (as opposed to the ‘Cloud in Cell’ technique where
each marker has an influence on the entire flow field), which makes this scheme well
suited for three-dimensional flow solutions. Also, the Lagrangian solution needs to be
computed only in regions of interest as markers can be located selectively in the flow.
No a priori information is required on the flow structure since the Lagrangian solution

includes inherently ‘convective’ capabilities.
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1.4 Thesis outline

Chapters 2 and 3 present the equations, numerical procedure and accuracy study for
the Eulerian solver for both the compressible and incompressible flow cases. The mesh
generation technique is described in Appendix A. The Lagrangian equations are the
object of Chapter 4, whereas the coupling of the two solvers in the time integration is
described in Chapter 5 for different flow configurations. Finally, the correction proce-
dure by which the Lagrangian equations influence the Eulerian solution is presented in

Chapter 6.

The first test case, discussed in Chapter 7, is the convection of a Lamb vortex in
a three-dimensional uniform background flow and is used as a preservation test for a
compressible unsteady flow. An analogous test case is presented in Chapter 8 as the
preservation of a turbulent inlet velocity profile in a straight pipe. The swirling flow in
a straight pipe is the object of Chapter 9 with an emphasis on the development of a
vorticity gradient augmentation phenomenon and the particular solution adopted with
the combined Eulerian/Lagrangian solver. The vorticity errors and stagnation pressure
losses encountered in the Eulerian solution of a 90° bend are reduced by the use of the

Lagrangian correction method in Chapter 10.

Chapter 11 deals with the secondary flow in bent pipes. The secondary flow genesis
is first described and Eulerian and Eulerian/Lagrangian solutions are computed and
compared with experiments. The introduction of a simple ‘law of the wall’ model is

attempted in order to deal with viscosity effects.

The last case, reported in Chapter 12, is the external flow over a three-dimensional
wing. This chapter emphasizes the spurious numerical diffusion of the tip vortex behind
the trailing edge and the correction obtained using the combined Eulerian/Lagrangian

scheme. Comparison with experimental data is also performed.

Finally, Chapter 13 presents a summary, the contributions as well as the conclusions
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and the recommendations for future work.
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Chapter 2

Eulerian Governing Equations

Provided the tangential forces applied on fluid particles are small compared to the
pressure forces, the fluid can be treated as inviscid. The evolution of an inviscid flow
in time and space is described by the Euler equations [60, 3]. Here, these equations
are used for the solution of both steady incompressible and unsteady compressible flow
fields. The numerical solution procedure using a Lax-Wendroff scheme is the object of

the next chapter.

2.1 Euler equations for compressible flow

For the solution of unsteady compressible flows, the solution is marched forward in
time from an initial condition. The Euler equations expressed in a (z,y, z) Cartesian
coordinates system and in conservation form are

oU _9F 3G  bH

5 8z 9y T 9z’ (2.1)
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where U, the state vector of the conservative variables and F, G, H, the fluxes of mass,

momentum and energy are written as

(o ) A T
pu pu’+p puv puw
U=| pv |, F= puv , G= pv? +p , H= pow
pw puw pow pw? + p
\ Peo \ puleo + p/p) \ pv(eo +2/p) \ pw(eo +p/p) )

p denotes the fluid density, u, v, w are the velocity components in the Cartesian co-
ordinates, p is the pressure and ep is the total energy per unit mass. Additionally the

perfect gas law is used to relate the total energy per unit mass to the pressure as
1
= (v = Dpleo - 5 +0* + %)), (2:2)

where 7 is the ratio of the specific heats. The speed of sound ¢ and the total enthalpy

per unit mass hg are defined by
c=,/—, ho =ep + 2 (2.3)
p
2.2 Euler equations for incompressible flow

For an incompressible unsteady flow, the state vector U and the fluxes F,G and H are

written as

o
2
<
g

u u? + p* uv uw

U= , F= , G= , H= , (2.4)
v uv v? + p* w
w uw vw w? + p*

where p is a constant and the ratio p/p is denoted p*.
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The main problem in solving the Euler equations for an incompressible flow is to link
the velocity changes to the pressure changes in a way that enforces the divergence-free
condition. In two dimensions, the solution of steady or unsteady incompressible flows
can be achieved through the stream function-vorticity formulation (therefore eliminating
the pressure from the governing equations). In three-dimensional flow calculations,
however, this solution technique becomes more complex and other solution procedures
are usually sought. The vorticity-velocity formulation used by Dennis {17] replaces the
two-dimensional stream function-vorticity formulation. The Poisson’s equation method
developed by Harlow [24] consists of iteratively adjusting the pressure field by solving
a Poisson type equation for the pressure change. Poisson’s equation is obtained from
the requirement that the continuity equation must be satisfied. Since this method
involves an iterative procedure it is, however, very time consuming for three-dimensional

applications.

A well-known class of solution procedures for steady compressible flows is the time-
marching method where the full unsteady Euler equations are used and the solution
evolves through a pseudo-unsteady process from an initial guess to the final steady-
state. Nevertheless, in the limit of an incompressible flow, sound waves with very large
speed tend to make the system stiff and render this inefficient. A well-known solution
to this problem, and the method used in this work, is the artificial compressibility
concept introduced by Chorin [14]. The purpose of this technique is to transform the
character of the Euler equations for an incompressible flow from elliptic to hyperbolic
by adding a time-dependent term in the continuity equation. This particular method
has been successfully tested on an extensive set of internal and external incompressible

flow problems (58, 13, 55, 61, 79).

To introduce a time-derivative of the pressure in the continuity equation, the di-

vergence term is multiplied by the “artificial compressibility” parameter c2 so that the
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modified state and flux vectors are defined as

P* 2u v 2w
u u? +p* uv uw
U= , F= , G= , H= . (2.5)
v uv v? + p* vw
w uw vw w? + p*

The value of the artificial compressibility parameter can be adjusted to increase the
convergence rate of the time-marching procedure. When steady-state is reached, the
modified system of equations reduces to the standard Euler equations for steady flow.
Also pseudo-time stepping can be used since the unsteady process is of no interest here

and only the steady-state solution is retained.

The introduction of the artificial compressibility parameter results in giving finite
speed to the propagating waves, in contrast to truly incompressible flow where the waves
move with an infinite speed. The pseudo-speed of sound 3 is computed in Section 3.4 by
analyzing the linearized Euler equations with 1-D variations. B depends on the artificial

compressibility parameter c2 as

B=[u2+e. (2.6)

Chang [13] estimates the relation between the parameter c2 and the rate of convergence
by looking at the speed of the propagating waves. The time taken by a wave to travel
from the inlet of the computational domain to the exit over a distance L and back is

L L 26L

t= =
ﬁ+u+ﬁ—u c2

(2.7)

This value represents the minimum time needed for convergence. If the time-step allowed
for stability is At, then N the number of time-steps required becomes

N = 28L (\/u2+c§> 2L

T At 2 At

(2.8)

a decreasing function of c2. Regarding the value of the artificial compressibility param-
eter, it is shown in Section 3.4 that the ratio of the largest to the smallest eigenvalues

of the linearized Euler system of equations is dependent on 8. B is therefore a measure
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of the condition of the system. Rizzi [55] has verified numerically that a ratio ¢2/u?
between 1 and 5 ensures the system to be well-conditioned. In this particular study a

constant value of c2/u? of 1 is used.

Another advantage of the artificial compressibility method is its natural extension
to the handling of the Navier-Stokes equations [13]. Also the same concept has been

used for the solution of unsteady flows problems [43].

2.3 Non-dimensionalization

The Euler equations are used in a non-dimensionalized form which allows for the flow
values to fall within prescribed limits. The arbitrary reference values are given below

for the different flow cases treated in this work.

For the compressible flow in a channel the reference quantities are the channel length
L, the inlet stagnation speed of sound co,, and the inlet stagnation density po,, so that

the non-dimensional variables are

- Z — — Z
zr = T Yr = %9 zZr = A
¢ = __t
r = 7_7
L CO;n
u v w
= —_— v, = w, = L
Ur CD.',; ’ T €0in ’ r CO,',, ’
_ e
P = —%—, Pr= 5(;".— eor = —L-.
poincoin m Coin

The corresponding reference inlet stagnation pressure and enthalpy are

Po; 1 7 (Poin)r 1
in Jr = —_— = hO,',. = L = . 2.9
(po ) poiﬂcgg" 7 ( ) 7 - 1 (poiu)f 7 - 1 ( )

For incompressible flow in pipes, the reference quantities are the pipe radius R, and

the inlet mass-flow averaged velocity %;,. For the incompressible flow around an airfoil
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the reference length has been chosen as the airfoil chord c, and the reference velocity
is the freestream velocity Us. If the reference length and the reference velocity are '

denoted by L,.s and U,.s, then

- Z = - z
Zr = L..s’ ¥r = IE";, Zr = L.’
t
t =
T Lref;Uref,
- LU O ) - Jw
U, = U,s’ v = U,e5’ Wy = U,es’
*
= _U%’
re
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Chapter 3

Euler Solver: Numerical Procedure

3.1 Lax-Wendroff algorithm

The Euler solver uses a Ni-Lax-Wendroff node-based scheme on an unstructured grid.
An explicit time-marching procedure subject to appropriate boundary conditions is used

to drive the solution from an initial guess to a steady-state or to an unsteady solution.

The numerical procedure has been introduced by Ni [47] for two dimensions and
has been described later by Ni and Bogoian [48] for a three-dimensional application
on a structured grid. The present chapter deals with the algorithm description for

unstructured meshes.

The spatial discretization uses hexahedral cells and the change in time of the state
vector U is expressed as a function of the fluxes across the cell faces. These are evaluated
as the average of the fluxes at the corner nodes. The residual (found from summing
the fluxes across the six faces of each cell) is used to determine the change in the state

vector and is then distributed back to the nodes following the Lax-Wendroff algorithm.

The state vector U at time-step n + 1 can be expanded in a Taylor series up to the
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second-order terms as

. . aU A2 (82U\"
Ut -y -At(8t> +—2—(—5t?) , (3.1)

and the time derivative of the state vector U is related to the spatial derivatives of the

fluxes F, G, H by Equation (2.1)

ou O0F 0G O0H

% 9 oy oz (3-2)

Hence, the change in the state vector between two iterations is

0F 0G 0OH
sU=U'_-Ur= - A [ ] .
U=U U t02:+6+02 (3.3)
At [ 0 F\™ 0 G 0 0H
- Tl () v (0F) + 3 ()
The second-order changes are defined as

AF = Ataa—F AG = At%ﬁ, AH = At%—H— (3.4)

Integrating over a pseudo-cell P formed by joining the centers of the cells surrounding
node 1, as sketched in Figure 3.1a), gives

/6U1dV /[ At(aF 3G+‘9H) —At(aAF"+ aAG"+iAH")]dV.

0 0z 2 \d 0y 0z
(3.5)
Then by applying Gauss’ theorem we get
su, = -Ah [ (F.G,H)-7ds - Atl /(AF AG,AH)- i dS. (3.6)
1

i denotes the unit normal to the cell surfaces pointing outwards, V7 is the volume of

P. At, is the time-step associated with node 1 and is defined by

(5) -3 5. ) e

8 cells

where the sum operates over the eight cells surrounding node 1. In Figure 3.1a) node 1 is
surrounded by mesh cells 4, B, C, D, E, F, G, H (mesh cells D and H are not represented
for clarity purposes). Figure 3.1b) and c) represent the pseudo-cell split into eight cells
Ap,Bp,Cp,Dp,Ep,Fp,Gp, Hp. The integration of the first-order terms is found by
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c)

Figure 3.1: a) Mesh cells A to H surrounding node 1 and pseudo-cell P centered on
node 1, b) and c) enlargement of pseudo-cell P split into eight cells Ap to Hp. Shaded
surfaces indicate surfaces used for b) integration of first-order terms and c) integration
of second-order terms.
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integrating over all the surfaces of these eight volumes as shown by the dashed surfaces

of Figure 3.1b)

Aty
£

/ (F,G,H)-#dS = _ﬁ/ (F,G, H)-7 dS. (3.8)
P Vl Ap,..Hp

Each of these integrals is estimated as one eighth of the surface integral over the corre-

sponding mesh cell surrounding node 1 so that

/P(F,G,H).ﬁd5= —%/A (F.G,H)-7ds. (3.9)

Aty
|6

The integral of the second-order terms is performed over the ezternal surfaces of the

eight cells Ap to Hp as represented by the dashed surfaces in Figure 3.1c), so that

Aty
2V

/ (AF,AG,AH)- 7 dS = _éﬁf (AF,AG,AH)-#dS. (3.10)
P 2V1 Jap1.Ap2.Aps

Hpy, " ;z yHps
The integral over the surface Ap; is evaluated as one fourth of the integral over
the ‘mean surface’ 4; defined as the average surface between two opposite faces of mesh
cell A. The ‘mean surface’ A; is represented on Figure 3.1a). A similar procedure

applies for surfaces Ap; to Hpsz so that

- -"\ﬂ/ (AF,AG,AH)-7dS = _ﬁ/_ _ (AF,AG,AH)-7dS.  (3.11)
2Vi Jp 8V1 JA,.4: 4s
-E-lv.ﬁ.;’ﬁ-l
Hence,
Aty - Aty L .
§Uy = —— F,G,H)-idS — — AF,AG,AH)-#dS, 3.12
! 8V1 A.....H( ) 8V1 Ax.Iz»Is( ) ( )
Ehﬁzvﬁa
or formally
6U1 =6U1A+6U13...+6U15, (313)

where §U; 4 is the contribution from cell A to the change in the state vector at node 1
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and so on for the contributions of cells B to H. §U; 4 can then be written as

50, = 1Ah ( v,

2 A A, — FsS5. + A H,S.) ), .
57 | 2t Ua ZIZJ (AF4S: + AGAS, + AH4S )) (3.14)
1 1413

where V4 is the volume of cell 4. S, Sy, and S, are the components of the surface
vector in the Cartesian coordinates, and AU, is the average first-order change in the

state vector in cell A defined as

AUs= -2 [(p G H). 7ds= Bl S (FS. +GS, + HS,) (3.15)
Va Ja Va 4

and F, G, H are averages of F, G, H over the four nodes of each face.

The second-order terms AF4, AG 4, AH 4 are expressed as a function of the change AU,

as

oF FYe. oH
AF, = (W)AAUA, AG, = (w)AAUA, AH, = <W>AAUA. (3.16)

However, a more straight forward way to compute the second-orders terms is to use the

changes in the conservative variables as follows.

For a compressible flow

[ ap ] [ A(pu) .
A(pu) ulA(pu) + puAu + Ap
AUps=| A(pv) | » AFy= ul(pv) + prAu
Alpw) ' ul(pw) + pwlAu
| A(PE) |, | w(A(pE) + Ap) + (pE + p)Au |
F A(po) " [ Alpw) '
vA(pu) + pulAv wA(pu) + pulw
AGy= vA(pv) + pvAv + Ap , AHy= wA(pv) + prAw
vA(pw) + pwAv wA(pw) + pwAw + Ap
| "(A(pE) + Ap) + (pE + p)Av | | | w(A(pE) + Ap) + (pPE + p)Aw |
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where u4,v4, w4 are obtained from averages over the nodes of cell 4 and
(Au)a = ((Alpu) - ubp)/p)s

(Av)a = ((Alpv) - vAp)/P)4

(Aw)a ({(A(pw) — wAp)/p)4

(Apla = (r-1) (A(E) - wa(pu) ~ vA(po) - wipw) + SE(02 + 7+ ?))

For an incompressible flow

[ Ap* ] [ c2Au ]
Au 2ulAu + Ap*
AUA = 3 AFA = p [l
Av ulv + vAu
_Aw_A _qu+wAu_A
[ Av ] [ cAw ]
vAu + ulAv wAu + vAw
AGA = ] AHA - ’
2vAv + Ap* wAv + vAw
_vAw+wAv_A | 2wAw + Ap 1,

where uy4, v4, w4 are obtained from averages over the nodes of cell A.

In addition to Equation (3.14), the change in the state vector at node 1 receives

contributions from the cells B to H written as

lAt] VB
Uip = -8—?1 (—A-t—B-AUB —_B_ %:E (AFgS; +AGBSy+AHBSz)) , (3.17)
1,02,03

1 Atl VC

1At [V
§Uyp = = |—2>AUp- Y (AFpS.+AGpS,+AHDS:)|, (3.19)
8 Vi \Atp 5. BT
1,4724473
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1At [V,
fUip = =2 | =AUp— Y (AFgS. + AGgS,+ AHgS,)|, (3.20)
8V, \Atg e
ElvE21E3
1At [V
§Up = 571 (—tF—AUp— 3 (AFpS,+AGp5y+AHpSZ)), (3.21)
! F FiFFs
1 At
Uy = -=2 EAUG_ > (AFsS.+ AGS, + AHGS.) |, (3.22)
8 V; te e
G1,G2,Gy
1At [V,
sy = -——2|2EAUxz- ). (AFyS.+AGgS, + AHgS.)| . (3.23)
8 Wi Aty 5 EH
1,412,413

The calculation of the cell volumes, face areas and volumes associated with cell nodes

is described in Appendix B.
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3.2 Numerical smoothing

By expanding the dispersion relation of the Lax-Wendroff scheme into Taylor series, it
can be seen that the Lax-Wendroff scheme carries both an inherent dissipation term
and a third-order dispersion error [73, 76]. The former term accounts for the scheme
stability when operating on smooth flow fields. Nevertheless, the dispersion error is
responsible for the introduction of oscillatory modes in the solution. In order to damp
these background oscillations, an artificial dissipation term has to be added to the Euler

equations.

The compressible flow version of the Euler solver uses a standard Laplacian second-
difference smoothing. The Laplacian is obtained at node 1 by summing the difference
between the state vector at node 1, U;, and the cell-averaged state vector of the 8
surrounding cells U4 to Ug (the nomenclature is described in Section 3.1). The change
in the state vector at node 1 is then the sum of Equation (3.13) and the contribution

from the second-difference smoothing

At Vie
68U, = §Uya + ...+ 8U1g + 1/2—l z (A:k (Ukc - U1)) ’ (3.24)

W ke=A,..H

where v, is an artificial viscosity coefficient, V; the volume associated with node 1 and
Vi the volume of the cell kc. At; and Aty are the time-steps associated with the node

1 and the cell k¢, respectively.

The incompressible flow version of the Lax-Wendroff algorithm uses a fourth-difference
smoothing. The fourth-difference operator is constructed as a second-difference of a
second-difference. Instead of using two standard Laplacian operators, the inner second-
difference involves a “pseudo-Laplacian” operator defined by Holmes and Connell [31]
and obtained at node n as

imaz
D, =Y wi(Ui — Uy), (3.25)
i=1

where the sum operates on any number %4, of nodal points surrounding node n. As
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Figure 3.2: Nodal points 1 to 6 chosen for determination of fourth-difference smoothing
at node n.

shown in Figure 3.2 the 6 surrounding nodes along the neighboring cell edges have been
selected in the domain (less nodes are involved at the boundaries because of the missing
neighbors). The w; are the “weight” factors allowing the smoothing operator to be
transparent when applied to any linear function in z,y or z and for any choice of i,mqz.
Thus, the weight factors w; must statisfy

tmazx

Z wi(z; — z,) = 0, (3.26)

i=1

imaz

> wilyi—ya) =0, (3.27)

i=1

15“:: w,-(zi - z.,,,) = 0. (328)

=1

To ensure stability, the weight factors are chosen close to unity by minimizing the cost

41



function

tmaz

Cn= ) Aw}, (3.29)
i=1
where
Aw; =1 - w,. (3.30)

The fourth-difference smoothing is written as the standard second-difference operating
on this “pseudo-Laplacian”. The change in the state vector at node 1 is then formed by

the sum of Equation (3.13) and the contribution from the fourth-difference smoothing

At Vee
6U1 =6U1A+...+6U1_H—V4——1 A:k

Vi ke=A,..H

(Da,. — D3,). (3.31)

vg is the fourth-difference smoothing coefficient and D, is the cell-average of D, at

the eight nodes of cell kc.

The use of this pseudo-Laplacian ensures that the smoothing term does not distort
any linear function in the domain (even the linear functions perpendicular to the bound-
aries). Since the choice of imq. is arbitrary, there is no need for a special treatment of
the smoothing at boundaries of the domain (inlet, exit, wall,...). Also, the use of weights

allows linear functions to be exactly represented on irregular grids.

In some instances, as in the case of a convex wall, some of the weights become
negative. Holmes [31] elected to clip the weights in the range (0, 2) because of stability
problems. However, it has been found in this work that clipping the weights resulted in
a degradation of the solution. The negative weights have not been clipped in this work
without any significant stability problem. However, a slight decrease in the convergence

rate was observed.
The actual algebra involved in the computation of the weight factors is presented

below. The problem consists in minimizing the cost function C, under the constraint

that the pseudo-Laplacian operator must give zero value when applied to linear functions
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in z,y and z. Using the Lagrange multipliers, the function to minimize is

imazx

F= Z ((Awi)? + wi( Ao(z; — Za) + Ay (¥ — ¥n) + Az(2 — 20))) (3.32)

=1

where A;, Ay, A, are three unknowns. The ‘Euler’ equation of the problem is

OF
350 =0 (3.33)
or
Aw; = —0.5(Az(z; — z,,) + A% = Yn) + Aoz — 22)) (3.34)

By combining this equation with Equation (3.26),Eq (3.27) and Equation (3.28), A, Ay Az

are found as

—Ro(Ipyl..—12,) + Ry(Iryl,. —I..1,.) ~ R.(IpIy. — I, 1..,)

Az = ’
Izz(Inyzz _Igz) - Izy(IzyIzz -IzzIyz) + I::z(I:tnyz _Inyzz)
A _ Rz(IzyIzz —I::zIyz) - Ry(lzzIzz _I:?:z) + RZ(Iz-‘BIyl ‘IxyIZZ) (3 35)
v —Iry(IryIzz _IzzIyz) + Iyy(Ia::tIzz —Ifz) - Iyz (I:::z:Iyz _IzyI::z)’ '
s o “Relayly~Iyle:) + By(Tealys —Ioyles) = Ro(lealyy —12,)
: Izz(Iznyz “Iny::z) - Iyz(IzzIyz _I::yI::z) + Izz(Iz::Iy'y _Izzy)
wherg
R: = Z (2;‘ - 211.)7 I:x::c = Z (:'B,' - :Bn)z, I:cy = z (2,' - :Cﬂ)(y,' - yn))
i=1 =1 =1
By=3 (5i-t) Iy = 3 (wi-v) L.= Y (2 2a)(z — 20),
=1 =1 i=1
R = E (Zi - z"‘) N Z (Z,‘ h zn)23 Iyz = Z (yi - yn)(zi - zn)
1=1 =1 =1
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3.3 Mesh singularity treatment

The meshes used in this work for the computation of flow in pipes present singularities
where a given node belongs to only six cells instead of eight. Figure 3.3 represents such
a singularity (in a 2-D case for clarity). Node 1 is surrounded by cells A to F (faces of
cells A to C are shown). The pseudo-cell P has volume V; defined as an average over 6

cells

1
Vi=g > Ve (3.36)

6 cells
At is the time step associated with node 1 defined by

()35, ()

6 cells

The pseudo-cell P can be split into 6 smaller cells (faces of Ap to Cp are shown).

H-type O-type

Figure 3.3: Mesh singularity at node 1 with pseudo-cell P.
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The integration of the first-order terms is performed over all the surfaces of these 6
cells. As in Section 3.1, each of these integrals is in turn estimated as one eighth of the

surface integral over the corresponding mesh cell surrounding node 1. Therefore

—ﬁ/(F,G,H)-ﬁdsz—
i Jp

Aty

F H)-7dS. .
e /A _(RG.H)-7ds (3.38)

The integral of the second-order terms is performed on the external surfaces of the 6
cells Ap to Fp (surfaces Api, Aps, Aps to Fpy, Fpy, Fp3). The integral over Ap; is

evaluated as one fourth of the integral over 4; and so on for faces Ap, to Fp;. Hence,

- —/ (AF,AG,AH)- 7 dS = _ﬁ/_ (AF,AG,AH)-7dS.  (3.39)
P 8V1 A;,Iz,lg

Fy,F2,Fs

According to Section 3.2 the additive smoothing term can now be written as a sum over

6 cells instead of 8 and the final change in the state vector at the singular node 1 is

At Ve
Uy = 8U14+6Us -f-t5U1c+¢5U1D+¢5U1E+¢5U1F+11271 Z (Ak (Uke - U1)> ,
1 kc=A,....F Lke

(3.40)

when using a second-difference smoothing and

At Vie
§Uy = 6Uya + 6Usp + 8Usc + §Usp + 6Usg + 8ULp — vg =2 k
Vl kc=A,...F Atkc

(Da,. — D2,),

(3.41)
when using a fourth-difference smoothing. 6U; 4 to éU, r are given by Equations (3.14)
and (3.17) to (3.21).

In the unstructured code implementation the update of the state vector for the sin-
gular node is computed in a loop over the cells. Hence, the fact that only six cells are
contributing to a singular node is directly dealt with by the connectivity table. Never-
theless, V; and At; associated with the singular node 1 need to be defined according to
Equations (3.36) and (3.37).
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3.4 Farfield boundary conditions

The farfield boundary conditions allow the use of truncated domains without affecting
the numerical solution. These conditions follow from the 1-D linear characteristics
theory whose theoretical background and implementation are described by Giles in
[23] and [22]. The derivation of the Euler equations written in primitive form and
computational coordinates is described in Appendix C. These equations are readily

transformed back to physical coordinates as

a;,, + Aaa(i" + Baa%’ +C aazp =0. (3.42)
where
p\ (u p 00 0\
u 0 = 00 1%
Up=| v |> A=10 0 » 0 0 |,
w 0 6 0 » O
\ P} \ 0 7 0 0 u
(v 0 p 0 0) (w0 0 p 0)
0 v 0 00 0 w 0 0 O
B=loo0o v 0], C=[00w 0 0[],
00 0 » O 0 0 0 w %
\0 0 9p 0 v ) \0 6 0 vp w)
for a compressible flow, and where
r* 0 ¢2 0 0
U, = u ’ A= 1 2u 0 O ,
v 0 » u 0
w 0 w u

46



0 0 ¢ 0 0 0 0 ¢
0 v u 0 0 w u
.B = 4 C = b
1 0 2v 0 0 0 w v
0 0 w v 1 0 0 2w

for an incompressible flow (the artificial compressibility method has been used to modify

the Euler equations).

Considering perturbations from a uniform and steady flow and retaining only the
first-order terms gives a linear equation for [7,,, the vector of the perturbations from a

uniform flow

oU, oU, U, o,
ot +4 oz +8 dy +C 0z

=0, (3.43)

where A, B and C are based on the uniform steady flow. Furthermore, if it is assumed
that the perturbations travel normal to the considered boundary (say in the z direction),
then the derivatives in the y and z directions can be ignored and the above system of
equations reduces to the 1-D linear system

aU, + AaUp _

o oz = 0. (3.44)

For convenience, the “symbols will be omitted in the remainder of this section and I.Jp is
renamed U. The convention is that the matrices A, B and C are based on the uniform
flow field and that U is now the vector of the perturbations from the uniform flow field.

The matrix A can be diagonalized by the transformation
A=T1AT, (3.45)

where the columns of T are the right eigenvectors and the lines of T7-! are the left
eigenvectors associated with the five eigenvalues of A. Multiplying Equation (3.44) by
T-1 gives

T"%—? +T AT T—la—Z =0, (3.46)
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or

9% 0%
a7 TA5 =0, (3.47)

where & is the vector of the linearized characteristic variables defined as

$=T'U. (3.48)

The eigenvalues of A (i.e. the diagonal elements of A) represent the speeds of different
propagating waves. Each positive eigenvalue corresponds to a characteristic entering the
domain and each negative eigenvalue corresponds to an outgoing characteristic. At any
boundary the number of conditions to be imposed must correspond to the number of

characteristics entering the domain.
In the following the superscript * stands for specified values. Superscript ™ refers to
values at the previous time-step and **! to predicted Lax-Wendroff values at the present

time-step. Any characteristic leaving the domain will be superscripted n+1 since it is a

function of the Lax-Wendroff values in the domain.

3.4.1 Farfield boundary conditions for compressible flow

In the case of a compressible flow, the matrices T and T~ are

(-gfooz—i,z—i,\ (— 0 0 0 1)
0 ooﬁ-ﬁ 0 0 pc 0 O
T= 07,1?0 0 0 , T7'=| 0 0o 0 pc 0|,
o 0 X o 0 0 pc 0 0 1
\ 0 0o 0 % 3 \ 0 —pc 0 0 1}

and the five eigenvalues of matrix A are

M=u A=u, Ag=1u, Ay=utc¢, As=u-—c. (3.49)
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For a subsonic compressible flow the first four eigenvalues are positive and the fifth
is negative. Thus, at an inlet boundary the four first characteristics are propagating
into the domain whereas the fifth propagates out of the domain. At an exit boundary
the first four characteristics are exiting the domain and the fifth propagates into the

domain.

Inlet boundary - compressible flow

At the inlet boundary, the total enthalpy hg, the entropy related function s and two
angles a1, a; of the inlet velocity vector are specified. This is achieved by defining the
four residuals R, to R4 as differences between specified and Lax-Wendroff values as

R, = hy-hg,
R, = s"~3s°,
R; = (tane)" - (tana,)’,
Ry = (tana;)" - (tana;)?,

The entropy-related function s and the angles a;, a; are defined as
v w
s = log(yp) —7logp, tane;=~, tana;= -

The necessary changes in the characteristics in order to drive the residuals to zero are

found by performing one step of a Newton-Raphson procedure as

R §&,
R §&

2 |, d(R1, Rz, R3, Ry) 2 | 2o (3.50)
R 0(21,%:,%3,24) | 43,
R, 5,

The Jacobian matrix is computed as

_ O(Ry, Ry, R3,Ry)  O(Ry, Ry, R3, Ry) 8(p,u,v,w,p)

J = =
3(<I>1, §2,§3, §4) a(p,u,v,w,p) 3(§1,§2, ‘}3, @4)
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_ 1
_—_‘ZLf c? 0 0 2&\
(vy-1)p (y-1)p 0o 0 o0 L
=1 0 0 0 1 2pc
= P P 1
0 = 0 0
0 =z 1 0 P
wr 1
0 0 & o
0 =w o 1 0 P
u? u o o o 1
\ 7 )
v w lectu
p(-1) P pc PC—E_\
1
_ > 0 0 0
- 1 —v
0 pcu 0 2pcu?
1 —w
U - v i

The required changes in the first four characteristics are then found from Equation (3.50)

as
58, R
5@ R
Pl=cut] 7, (3.51)
§&; Rs
5%, Ry

whereas the change in the fifth characteristic is found from
(685)" = Tt 6U = —pe(bu)™t! + (8p)"F, (8.52)

where T;! is the fifth line of 7~ and (6p)"*! and (6u)"*! are the Lax-Wendroff changes
in pressure and inlet normal velocity at the inlet nodes. The changes in the primitive

variables are then found by

( 5p ) (s,
fu 62,
o | =T TR
éw 6@,

Lor) e
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Exit boundary - compressible flow

At the exit boundary the pressure is set corresponding to the one necessary condition

defining the residual
R=p"—p'. (3.53)

The necessary changes in the characteristics in order to drive this residual to zero is

found by

oR
—_— = 3.54
R+ a§56§5 05 ( 5 )

and

OR oR d(p,u,v,w,p) _ 1 1
%5 9(p, U, v, w, p) 0% - )

The required change in the fifth characteristic is then found as
6®s = 2R, = -2(p" - p°),

whereas the change in the first four characteristics are calculated using the Lax- Wendroff

changes in the primitive state vector as

n+1
n+1 ( ép \
5%, -2 0 0 0 1
od 0 0 0 ou
2 0 C
= p 6o . (3.55)

6%; 0 0 0 pc O

Sw
6%, 0 pc 0 0 1

\ éP

The changes in the primitive variables are then found by

(5o ) ( (63, )
Su (6&,)"H1
fv | = T | (58,
dw (6&4)"H1

YR
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The changes in conservative variables are found for an inlet or exit boundary by

using the changes in the primitive variables as
§(pu) = ubp+ pbu,
§(pv) = wvép+ pév,
§(pw) = wép+ pdu,

1 1
§(peg) = ——=bp+ pudu+ pvév + pwéw + Z(u? 4 v? + w?)ép.
v-1 2

3.4.2 Farfield boundary conditions for incompressible flow

In the case of an incompressible flow, the matrices T and T-1! are

w _wu
00 ap -8 (B E
0 0 u(u+p)+cl u(u—p)+ecl . -5 g O
T= , T = " 1 s
01 v(u+ B) v(u — B) ——5—%2c°ﬂ 257 00
10 w(u+ B w(u - B L_u 1
) ) s 3 0 )
and the four eigenvalues of matrix A are
M=y, Aa=u, Ma=u+f, Ay=u-0, (3.56)

where 8 = \/u? + ¢2.

The first three eigenvalues are positive and the fourth is negative. Thus, at an inlet
boundary the first three characteristics are propagating into the domain whereas the
fourth propagates out of the domain. At an exit boundary the first three characteristics

are exiting the domain and the fourth propagates into the domain.
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Inlet boundary - incompressible flow (internal flow case)

For the internal incompressible flow cases, namely the flow in pipes, the inlet velocity
profile is known through measurements or can be approximated by computing a fully
developed velocity profile. In these cases, the three components of the inlet velocity are

specified so that

R1 = u' -
Rz = " —2*
R3 = w" —w'.

The necessary changes in the characteristics in order to drive the residuals to zero are

found by
Ry 58,
O(Ry, R, Ra)
=0. 3.57
B2 | % 3(3,,8,,80) | °% (3:57)
R3 6%;

The Jacobian matrix is computed as

_ a(R'Ia RZaR(!) _ a(Rla RZ, R3) a(P',ua‘an)

J = =
a(§1, §2a §3) a(p‘3 u,v, ’LU) a(éla QZ, §3)

00 c2p

0100 0 0 u(u+pB)+¢2
0 0 u(u+pB)+c

=]l0010 =101 v(u+p)

01 v(u+ B)

0 001 0 w(u+p)
10 wu+p)

The required changes in the three first characteristics are then found from Equa-

tion (3.57) as

68, Ry
68, | =-J'| R, |, (3.58)
6®5 Rs
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whereas the change in the fourth characteristic is found from

1
232

u+

n+l _ p-1 —
(68 =T, 6U = —5555

(6p")" ! + —(6u)™t. (3.59)

T;! is the fourth line of T-* and (6p*)"*! and (§u)"*! are the Lax-Wendroff changes
in pressure and inlet normal velocity at the inlet nodes. The changes in the primitive

variables are then found from

6})‘ 6@1

du 6&2
=T

v 6@3

§w (6&4)"+1

Inlet boundary - incompressible flow (external flow case)

For the external incompressible flow cases, namely the flow around a wing, better results
were obtained by not specifying the three components of the inlet velocity but the
stagnation pressure and two angles of the velocity vector instead. In this case the

residuals are
Ry = p5—pos
R, = (tana;)" - (tanay)’,
R; = (tana;)" - (tanaz)’,

where the stagnation pressure and the two angles of the inlet velocity vector are defined

as

- 1 2 2 2 v w
po=p + 5 +v' +w’), tamar=-, tamay=_.
U u
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The necessary changes in the characteristics in order to drive the residuals to zero are

found by
R, 6@,
O(Ry, R2, R3)
ATy Tray S =0. .6
B [+ 37,3, 8, | 5% (3.60)
Rs 6d5

The Jacobian matrix is computed as

_ a(RIJ-RZ’ R3) _ a(RlsRZ') RS) a(p.,u’vvw)

J = =
0(®1,%2,%3)  9(p",u,v,w) 3(3y, B2, ¥3)
0 0 23
1 u v w 5
| o _tana 1 0 0 u(u+p)+c
U u
o _tamay 4 _1 01 v(u + B)
u v 10 wu+p)
w v (u+ B)(c+u?(l+tan?a; + tan?ay))
_ 1 tan a;c?
= 0 % .__ul_
1 _tanaycl
u U

The required changes in the first three characteristics are then found from Equa-

tion (3.60) as

6%, R,
6%, | =-J'{ R, |, (3.61)
§%3 R;

whereas the change in the fourth characteristic is found from

u+pg
2622

(6p° )+ 4 2—;—2(@)”1. (3.62)

T ! is the fourth line of 7= and (ép*)"*+! and (§u)"*+! are the Lax-Wendroff changes

(6@4)"1 =T 6U = -

in pressure and inlet normal velocity at the inlet nodes. The changes in the primitive
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variables are then found from

ép* 6%,

bu 328
=T

év §®4

dw (6@4)n+1

Exit boundary - incompressible flow

In the pipe flow cases, the vortex created by the secondary flow impinges on the exit
boundary. Also in the incompressible flow around a wing, the trailing vortex sheet rolls
up into a vortex which crosses the exit boundary. Imposing a constant pressure at the
exit boundary would not be consistent with the presence of the vortex. Instead, good
results were obtained by setting the first derivative of pressure to zero in the direction
normal to the exit boundary. Using the node i — 1 adjacent to the exit boundary as

depicted in Figure 3.4, this gives

Pl =P,

Approximating the pressure in the direction perpendicular to the exit boundary by a
linear function (by setting the second derivative of the pressure to zero) gave similar

results. =

Using the pressures computed at each node of the exit boundary as specified pres-

sures, the following residual is defined
R =p*" - p*. » (3.63)

The necessary changes in the characteristics in order to drive this residual to zero is

found from

0R
R+ 5588 =0, (3.64)
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vortex axis p ~ cst

1—1

¢ exit boundary

Figure 3.4: Exit boundary with impinging vortex.

and

R OR o(p*,u,v,w)

—1.(_p2
9%, o, uvw) 08, L (7P

The required change in the fourth characteristic is then found as

1 1 *1 *3
6%y = cz_ﬁR— c:{_ﬁ(p - P ),

whereas the change in the first three characteristics are

(68" =T716U = _gf (6p*)"+1 — %;_{ (fu)+ +(Sw)n+,
(6&2)714-1 = Tz"l sU = _% (6pt)n+1 _ 2_’!21« (611)"+1 +(6‘U)"’+1,
(6§3)ﬂ+1 = T3—1 U = —2‘22-{; (6}3‘ )ﬂ+1 + ziﬁ (6u)n+1_

Tl‘l,T:,'l,Ts‘1 are the first, second and third lines of T-1, respectively and (ép*)™+!,
(Su)+1, (6v)"+1, (6w)"*? are the predicted Lax-Wendroff changes in pressure over den-

sity and velocity components at the exit nodes. The changes in the primitive variables
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are then found from

ép* (63,)"t1
bu | _ (6@2)"H
§v (6§3)n+1
bw 0%,
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3.5 Wall boundary condition

A no flux boundary condition is imposed at the wall boundaries, i.e.
T-A=0. (3.65)

This condition implies that the fluxes F, G, H through the wall faces are only a function

of the pressure.

The wall boundary condition is imposed once the Lax-Wendroff fluxes have been
computed and the changes in the state vector have been determined for each node.
Since the boundary condition deals with a flux condition on a face, the cell residual
computed before in the main Lax-Wendroff routine is erroneous. The wall boundary
condition corrects the residual for these particular cells. The corrected cell residual is
then distributed to the eight nodes as before. The cell residual for cell A is (taking into

account only the first-order terms)

AUy = -S4 S (FS.+Ts, +Es.), (3.66)

A 6 faces

where F, G, H stands for the average values over the four nodes of F, G, H. The residual
at the wall node 1 of cell A is defined as

1 Aty ( Va )
F) =__—_——{ LA . 3.67
UIA 8 Vl :tA UA ( )

For a wall node, the node residual receives contribution from only four cells instead of
eight but also takes into account a smaller node volume. By adding to the cell residual

AU, the term
[ RY
PS=z

24 \Fs, + TS, + HS. - | s,

pS:

- 0 /]
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computed on the wall face for the compressible flow cases and the term

: .
Atg | =  =e = 7*S:
Al \Fs, 1G5, +HS. - | T
VA ptsy
| PS: )|

computed on the wall face for the incompressible flow cases, the contribution of a normal
mass flux on the wall face is eliminated. The new cell residual is then distributed to the

eight nodes as in Section 3.1.
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3.6 Symmetry boundary condition

In the incompressible flow cases analyzed in this work, the symmetry of the problem
allows the solution to be performed on only half of the domain. A symmetry-plane

boundary condition is enforced on the nodes lying in the symmetry surface.

The symmetry surface is defined by one computational plane. Due to the present
choice of Cartesian coordinates, this surface corresponds also to the (y = 0.) physical
plane. Then for any existing node at a position (z,y, z), a pseudo-node located at a
symmetrical position (z, —y, z) is characterized by the same primitive variables but an
opposite velocity component in the direction perpendicular to the symmetry surface
(here the v component). For a given face with vector surface § = (52,54, S52), the
surface vector of the symmetrical face is §, = (S5, ~$,, 5.). From Equation (3.15) the
average first-order change in the state vector AUy, for the pseudo-cell A, symmetrical
to cell A is then

Ap* Ap*

Au 3 Ay

Av - —Av

Aw A Aw )

From Section 3.1, it can be seen that the same kind of relations between cell A and cell
A, holds for the second-order terms. The time-steps and the volumes of cell 4 and A4,
are identical, so that the contribution from cell 4, to the change in state vector at node

1 lying on the symmetry surface is

ép* ép*
ou _ du
év - —év
Sw 14, bw 14

Therefore, the contribution from symmetric pseudo-cells is taken into account by

doubling the contribution from the existing cells for the pressure and the components
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of velocity parallel to the symmetry surface. The change to the component of velocity

perpendicular to the symmetry surface is set to zero.

Because the initialization of the flow may not satisfy the symmetry condition, a ‘no
through velocity’ condition is specifically applied each time the state vector is updated,

that is v; = 0.
The smoothing stencil at the symmetry surface is completed by taking into ac-

count the pseudo-node at location (z,—y,z) characterized by the primitive variables

*
p,Lu,—-v,w.
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3.7 Numerical implementation on unstructured grids

The actual implementation of the Lax-Wendroff algorithm is done in two steps. First
the fluxes F, G, H at the nodes are computed in a loop over the nodes. Secondly, in
a loop over the cells, the cell average state vector is computed. In the same loop the
changes due to the first-order and second-order terms are determined by summation over
cell faces, and the first-order and second-order terms are then added to the smoothing
term to give the contribution of each cell. A second-difference operator is computed in
the same loop and is applied on the state vector U in the case of a second-difference
smoothing operator. In the case of a fourth difference smoothing, this operator is applied
on a pseudo-Laplacian computed beforehand in a separate routine. The change in the
state vector for the 8 nodes is then obtained by summing the contributions from the

eight surrounding cells.

The subsequent boundary conditions imposition modifies the changes in the state
vector for the nodes lying on boundary surfaces. Finally, in a loop over the nodes, the

state vector changes are added to the current state vector value for each node.

The Lax-Wendroff algorithm is implemented on an unstructured grid where an array
over the cells points to the 8 nodes of each cell. When looping over the cells, this array
allows one to readily add the contributions from each cell to a node. 6 arrays over
the cells are initialized as the 6 surface vectors for each cell. The numbering of the
surface vectors is described in Figure B.1 of Appendix B. The inlet, exit, wall and
symmetry nodes have associated arrays to allow the differentiation of these particular
nodes from the rest of the field when handling the boundary conditions. The fourth-
difference smoothing term calculation requires ‘neighbor’ information. According to
the stencil defined in Figure 3.2, an additional array over the nodes contains the 6
neighbouring nodes along cell edges. Another array contains the 6 weight factors used

in the computation of the pseudo-Laplacian.

During the calculation each node gets associated with the fluxes F, G, H, a volume, a
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time-step, a change in the state vector and the state vector itself. Each cell is associated

with a volume and a time-step.

In order to take advantage of vectorization capabilities, each cell is ‘colored’. The
loops over cells are replaced by loops over colors. The maximum number of colors is
determined by the requirement that any two cells of one color must have no common
nodes, so that dependencies can be avoided. Boundary cells are associated with separate

colors in order to differentiate them from the field cells.
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3.8 Time-step restriction

According to the stability analysis given in Appendix C, the allowable time-step is given
by the CFL condition

At < J (3.68)

2+ 72+ r2+cval+ b2t d?

for a compressible flow and

At < J (3.69)

rftrd iyt ri4rli+ 2@+ +d)

for an incompressible flow, where

I =2e(ynz¢ — yezn) — 2n(Yeze — yeze) + z¢(Yezn — ynze), (3.70)
o= u(Unze — Yez) - v(Tpzg — z¢zg) + w(ToYe — TeYn),
re = —ulyeze ~ycze) + v(zeze —zcze) — wlzeye — zeYe),
r3 = w(Yezn — Ynze) — v(Tezq—2pze) + w(Teyn — Thye)s
@ = (Ynz — Yezn)® + (Yeze — Yeze)? + (Yez — Ynze)?s (3.71)
-2
b = (znze — 2e2n)? + (zezc — 2eze)? + (Tezm — T2 )7, (3.72)
& = (2o - zc¥e)® + (zeye — 2¢¥e)® + (zeyn — zoye)* (3.73)

The CFL condition is satisfied with a margin set by the CFL number multiplying
the maximum time-step. This number is set to a value of 0.9. When computing steady-
state flow problems with the time-marching procedure, local time-stepping is used in
order to accelerate the convergence, i.e. the CFL condition is satisfied independently
for each cell in the flow field. When computing unsteady flow cases, the time-step used

in each cell is set equal to the minimum time-step in the field.
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3.9 Accuracy study

An accuracy study is performed to confirm the second-order accuracy of the Eule-
rian Lax-Wendroff scheme. Since the incompressible flow through bent pipes is one of
the topics of this thesis, the constant stagnation pressure flow though a 90° bend is
chosen for this accuracy study. The Euler equations are transformed using the pseudo-
compressibility concept described in Chapter 2 and since the flow is symmetrical, the

calculations are performed on only one half of the pipe.

The test geometry is the 90° bend of circular cross-section, taken from the Enayet
et al. data set [21]. It will also be used in Chapters 10 and 11 of the results. The pipe
diameter is 0.048 m and the ratio of radius of curvature to pipe diameter is 2.8. The
geometry extends two diameters upstream and downstream of the bend. The accuracy
study is performed by using three grid densities with a mixed O-H type grid on each
pipe cross-section and a H type grid along the bend. The three grids are composed of
53 x 22 nodes, 189 X 43 nodes and 713 x 85 nodes, respectively. Each grid is composed
of four times as many cells as the previous grid in a cross-section and two times as many
cells in the streamwise direction. Side and front views of the grids are represented in

Figure 3.5.

The inlet conditions are defined to have constant stagnation pressure. A constant
inlet velocity is set through the inlet boundary condition. The inlet cross-section is
placed two diameters upstream of the bend so that the upstream influence of the bend

is negligible at this location and the constant inlet pressure condition is obtained.
The exact solution for the flow field has constant stagnation pressure everywhere.

Therefore, a global error in the Eulerian solver is quantified in terms of the L, norm of

the errors in stagnation pressure ¢,

N
€ = | —————Ei:l(ﬁc’°‘)z : (3.74)

where N is the total number of grid nodes, and ACp, is the local error in stagnation
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Figure 3.5: Front and side views of the grids used in the accuracy study (53 x 22 nodes,
189 x 43 nodes and 713 x 85 nodes).
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Figure 3.6: L, norm of errors in stagnation pressure as a function of the grid spacing
for the three grid densities.

pressure coefficient defined at a node by
Po;n, — Po
AC,, = =42—rm. 3.75
Po '12"ch1%1 ) ( )
The denominator represents the inlet dynamic head and py,, is the inlet stagnation
pressure. Referencing to the inlet dynamic head instead of the inlet stagnation pres-
sure eliminates the dependency on the background pressure level which is arbitrary for

incompressible flows.

The results are represented in Figure 3.6 where the L, norm of the errors in stagna-
tion pressure coefficient is plotted as a function of the grid spacing b in a logarithmic
scale for the three grids. The grid spacing is not uniform for this test case, but since
the value of h is just a reference value, it is determined as an average over the cells.
A line is drawn through the three points using a least-square fit. The slope of the line
determining the order of accuracy of the Lax-Wendroff scheme is -2.0. The theoretical

value which ensures second-order accuracy is -2.
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Chapter 4

Lagrangian Governing Equations

4.1 Lagrange equations for compressible flow

The Lagrangian equations for the convection of a particle in an inviscid compressible

and isentropic flow subjected to a conservative force field are

DU, _
o = T (4.1)
where
D_9
Di=e @Y (*2)

defines the material derivative. When applied to a fluid quantity, this operator expresses
the ‘convective change’ of the quantity due to the displacement of a given particle in
time as the sum of the unsteady and spatial changes as the particle moves from one
location to another. U is the state vector of the Lagrangian variables and 7j is a source-
term vector governing the change during time of the Lagrangian state vector for a given

particle. The Lagrangian state vector U; and the source term T} are defined by

v

#)-V(E)xVp |, (4.3)

!
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o
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where 7 = (z,y,2) is the position vector. The vorticity & and the entropy-related

function S are defined by

3=Vxv S§=-=L.
p’Y

(4.4)
By using the continuity equation, the change of vorticity for a given particle during time
can also be written as
&
(%)
Dt

- (%’ V)7 - %V(%) x Vp. (4.5)

The Lagrangian view of the momentum and energy equations given by Equations (4.1)

and (4.3) expresses the convective change of vorticity and entropy for a particle.

4.1.1 Source-term contribution in compressible flow

in a compressible flow is the sum of the contributions

»lEL

The convective change for
from a tilting/stretching term and a non-barotropic term. The first term (% - V)7 results
from the tilting and the stretching of the vortex lines during time. The non-barotropic
term —%V(lp) X Vp represents the contribution from the moment of the pressure forces
about the center of mass. The entropy-related function S is said to be passive, since it

does not undergo any convective change.

4.2 Lagrange equations for incompressible low

For an incompressible flow subjected to a conservative flow field, U; and T are defined

by

3

Ul = ’ T’l = . (4-6)

€
©
4
<y
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The use of the total pressure py as an additional convected quantity has not been elected
since the vorticity and the Eulerian velocity field already determine the total pressure
gradient according to Crocco’s equation for incompressible flow

——6‘xd§=-—\7(%). (4.7)

4.2.1 Source-term contribution in incompressible flow

In the case of an incompressible flow, the source-term reduces to the tilting/stretching
contribution (& - V)4. By decomposing (& - V)%, the stretching terms are identified as

the terms

du ov dw
w,a, wya—y, wz-é;. (4.8)

The fluid elements in the z, y, z directions with associated vorticity components w, wy,w;,
are stretched due to the strain fields %, %, %%, respectively. The strethﬂg of a fluid
element of length dy with associated vorticity w, under the strain % is illustrated in
Figure 4.1. The resulting change in vorticity is (wydv) for a fluid element of length dy.
Each component of & is intensified or reduced depending on the the sign of the strain

field. A positive strain corresponds to a vortex line intensification and inversely. The

remainder of the terms

w?E w@ w@ w@ wa w?—tﬂ
Yoy' T8z’ Toz’ 8z Taz’ Yoy

(4.9)
are due to tilting. An example of vortex line tilting is illustrated in Figure 4.1 where a
fluid element of length dz with associated vorticity w, is tilted an amount dw about the

y axis under the influence of the strain field dw/dz. The resulting change in vorticity

for a fluid element of length dz is w_dw.
As can be seen in Figure 4.1, the final directions of the fluid element and vorticity

vector are identical. Therefore, in an inviscid incompressible fluid subjected to a con-

servative force field, the vorticity & is said to be frozen to the fluid element. The fact
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fluid element

Figure 4.1: Stretching of vortex line in y direction and tilting of vortex line in z direction.

that vortex lines move as material lines, in an incompressible and inviscid flow, can also

be deduced from the comparison of the Helmholtz equation

Do

-—.Jt— = d; . V‘I-J‘, (4.10)

to the equation for the evolution of an infinitesimal line element dr' (8]

—— = dl- V% .
o 7 (4.11)

In a compressible flow, the quantity % is attached to the fluid element.
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Chapter 5

Eulerian/Lagrangian Integration

The Lagrangian solution is based on particle markers convecting through the flow.
Each marker position, vorticity (and additionally entropy for compressible flow) at the
marker’s position form the Lagrangian state vector U;. The convective change in the
Lagrangian state vector, as the marker moves through the Eulerian grid, is obtained by

the evaluation of the source term 7;.-

The Eulerian solution provides the information required for the computation of the
markers’ trajectories and for the integration of the Lagrangian source-terms. In turn
the Lagrangian solution is used to correct the Eulerian solution and reduce its numerical
diffusion error. This process allows the Lagrangian solution to accurately capture the
convection of vorticity (and entropy) while the Eulerian solution conserves mass, mo-
mentum (and energy). The standard time-integration of the Eulerian solver supports
the iterative interaction of the Eulerian solution and the Lagrangian particle tracking

solution.
First the computation of the markers’ convection and the integration of the source-

terms are described. The correction of the Eulerian solution using the Lagrangian state

vector is presented in the next chapter.
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=3

Figure 5.1: Local coordinate system in cell with node numbering and marker location
at 7 = (z,y, 2)-

5.1 Convection of the markers and integration of the

source-terms

At a given time-step in the Eulerian solution a set of markers is initialized at a chosen
location in the Eulerian grid. Associated with the markers are arrays indicating in which
cell each marker is located. The initialization of these arrays is provided by a brute force
search through the whole domain as described in Appendix D. As the markers move
through the Eulerian grid, these arrays are reset with the proper cell values by using a

system of ‘neighbouring cells’ which will be described later.

A cell-centered local coordinate system (£, 7, () is set up in each cell of the compu-

tational domain as shown in Figure 5.1. The eight tri-linear interpolating functions Ny
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to Ng are defined from cell corners to marker in the cell as

Ny =5(1-81-m(1-¢), Ny =3(1-61-n)1+),
N =3(1+48(1-n)(1-¢), Ne =L1+&1-n)(1+0), (5.1
Ny =3(1+81+n)1-¢), N =31+ +n)1+),
Ny =3(1-61+n)(1-¢), Ns =3(1-81+n)1+).

At each iteration, the local cell coordinates (£,%,() for a marker are determined by
solving the implicit system

8

Z k(£,m,0) T, (5.2)

by a few Newton-Raphson iterations as described in Appendix E. 7 and 7} are the
marker and the nodes positions, respectively. Usually, only three Newton-Raphson

iterations are required.

Any Eulerian function f (say the velocity or the entropy) defined at the cell nodes
is transferred to the marker location in the cell by the tri-linear interpolation as

8

6’77’ Z {a UB C)fk (53)

For steady-state solutions, the Eulerian and the Lagrangian solutions do not need to be
integrated in time using the same time-steps during the pseudo-unsteady convergence.
A local time-step can be used for the markers integration since, for steady flows, the
markers can convect at any speed aiong the streamlines. In unsteady flows, however,
the Eulerian and Lagrangian time-steps have to be the same, since at each instant in
time, the markers represent the current location and Lagrangian state vector of a given
particle. In the following, the Eulerian and the Lagrangian time-steps will be denoted

At and A, respectively.

When a time-step At; is taken in the Lagrangian solution in order to advance the
marker position and integrate the source-terms, the new marker position is found by

using a predictor-corrector integration scheme as

7 = Tlh)+ Al 7,
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Foo= 7))+ Ay T, (5.4)

7t + Aty)

1 - —
§(TP + rc)’

where 7, and 7, are the predicted and corrected marker positions, respectively. &7 is the
Eulerian velocity at time t interpolated from the cell nodes to the old marker position
7, and 1';';:1 is the Eulerian velocity at time ¢ + At interpolated from the cell nodes to
the predicted marker position 7. The interpolation from nodes to marker position is
performed using Equation (5.3). In System (5.4), the Eulerian velocity fields at time ¢
and t + At are used to find the new marker position. The predictor and the corrector
step can also be based only on the Eulerian velocity field at time ¢. Both options are
used depending on the Eulerian/Lagrangian interaction procedure as will be described

in Section 5.2.

The marker’s local coordinates have to be recalculated for the updated position
of the marker 7(f; + At;) by again solving System (5.2). If any of the £,7,( values
falls out of the range (—1,1) but in the range (-2,2), the marker has moved out of
the current cell but is located in one of the neighbouring cells. As mentioned before,
associated with each cell is an array containing its 26 neighbouring cells so that when a
marker moves out of a cell it can be readily relocated. Moreover, the locations of the 26
neighbouring cells relative to the central cell are known, so that the values of £,7 and
¢ directly indicate in which of the 26 cells the marker is located. (In the case of the
grid singularities mentioned in Section 3.3 and encountered in pipe flow calculations,
the missing neighbouring cells are accounted for by assigning two pointers to the same
cell). The marker local coordinates are now recomputed by again solving System (5.2)

for the cell where the marker has been found.

If the marker has moved more than one cell (any of the £,7,( values are out of the
range (—2,2)), a brute force search through the whole domain is required. This time-
consuming procedure is avoided by specifying a Lagrangian time-step smaller than the
time-step allowed by the CFL criterion in the Eulerian solution. The marker will then

move over a distance of less than one cell in one Lagrangian time-step At;. However, in
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steady flows with strong streamline curvature, as shown by the results from the swirling-
flow cases, the CFL restriction does not allow for accurate streamline integrations. In
these flows, the predicted marker position is used to scale the Lagrangian time-step such
that the marker cannot cross the cell in less than two Lagrangian time-steps in any local

cell coordinate direction.

The domain boundaries are bordered by ‘wastebasket cells’, so that any marker
exiting the domain is either eliminated or can be reinitialized somewhere else in the
domain. In order to minimize the array sizes, a marker renumbering system is used to

eliminate any exiting marker from the arrays and introduce new markers in the domain.

In parallel with the trajectory integration described by System (5.4), the Lagrangian
values of vorticity are computed at each marker by a predictor-corrector integration of

the source-terms for the vorticity from Equation (4.3) as
AG, = Ay [(J-V)ﬁ-w(v-a) _v (l) x Vp] ,
p 7

AG, = At [(5 V)T - &(V-7) -V (%) X Vp}nfl, (5.5)

Tp

for a compressible flow case. In turn, from Equation (4.6) for an incompressible flow
Aw, = A4[(@- V),
AG, = Ayl@- v)aEtt. (5.6)
Then the Lagrangian value of vorticity at the new marker location is found by
B(t + Ab) = B(t) + %( AG, + AG). (5.7)

In Systems (5.5) and (5.6), the quantities within brackets are determined at the old
marker location 7 by using the Eulerian state vector at time ¢ for the predictor step
and at predicted marker location 7, by using the Eulerian state vector at time t + At.
As for the trajectory integration, depending on the Eulerian/Lagrangian interaction
procedure, predicted and corrected values can also be dependent on the Eulerian state

vector at time ¢ only.
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The determination of the vorticity and of the non-barotropic term V(1/p) x Vp at
the marker location (old or predicted) on the right-hand side of Systems (5.5) and (5.6)
requires the definition of spatial derivatives. These are found directly for any Eulerian
function f defined at the grid nodes by differentiating Equation (5.3)

Z(BN“‘?& N 0n 6Nk3C)f

3 o7 T on oF T ¢ oF (5.8)

The metrics’ derivatives (9¢/87), (On/07), (8¢/d7) are directly found when using the
Newton-Raphson procedure as described in Appendix E. The velocity derivatives com-
puted by Equation (5.8) are required for the integration of the source-terms. In a
compressible flow, the spatial derivatives of density and pressure have also to be com-

puted.

In addition to Equation (5.5), for a compressible flow, the entropy-related function

S is integrated along trajectories as

S(ti + Aty) = S(tr). (5.9)

5.2 Eulerian/Lagrangian interaction

In order to achieve an efficient interaction between the Eulerian and the Lagrangian
solutions, two different strategies have been implemented for the different flow cases

treated here.

5.2.1 Downstream integration of trajectories

The first and more straight forward option consists in positioning the markers at the
inlet of the computational domain and tracing them as they convect downstream with

the local Eulerian flow. At each time-step along their respective trajectories, the new
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Lagrangian state vectors are obtained by integration of the source-terms and the markers
are used to locally correct the Eulerian flow. The initial values for the Lagrangian state
vectors are provided by linear interpolation from the Eulerian flow at the inlet of the
computational domain where the inlet boundary conditions are known. At this location,
the Eulerian solution does not significantly suffer from numerical diffusion due to the
proximity of the boundary conditions. For example, the vorticity field at the inlet of a

pipe will be function of the specified inlet velocity profile.

Figure 5.2b) shows a vortex convecting (perpendicular to its axis of rotation) through
a contraction. For this unsteady calculation, the markers are initially positioned in the
vortical region of the flow (near the vortex core) and then convect downstream together
with the vortex. In this unsteady test case, the time-step At; used for the integration
of the marker trajectories must be the identical to the Eulerian At. Figure 5.2a) shows
the sequence of interactions between the Eulerian and the Lagrangian solutions. First
the Eulerian solution at time ¢ and the Eulerian solution at time t + At are used to
compute the new marker position following Equations (5.4). The new values of vorticity
and entropy are computed using Equations (5.7) and (5.9) for a compressible flow and
Equation (5.7) for an incompressible flow. The new Lagrangian state vector is then used

to correct the Eulerian state vector for each cell containing a marker at time ¢t + At.

Figure 5.2c) represents a schematic for a steady swirling flow through a pipe. The
markers are injected from the inlet of the domain at regular time intervals in such a way
as to have approximately one marker per cell in the vortical regions of the domain. As
markers are convected downstream and exit the domain, it is necessary to reinject them
at the inlet. The trajectories and the source-term integration are computed in the same
manner as for the unsteady process but now since the Eulerian solver uses a pseudo-
time marching, the Lagrangian time-step does not need to equal the Eulerian time-step.
The Lagrangian time-step is now fixed by accuracy considerations in the trajectory
integration. The interaction between the Eulerian and the Lagrangian solvers is again

described by Figure 5.2a).

79



The downstream integration of the trajectories presents the advantage that no a
priori knowledge of the location or structure of the flow features is necessary. For an
unsteady flow, the markers are simply positioned in the features area at the initial time.
The use of identical Lagrangian and Eulerian time-steps ensure the presence of markers
in the vortex area for each time. For the steady swirling flow in a pipe, the markers can
be positioned in the entire inlet cross-section. In this case, however, it can be inferred
that placing markers only near the wall region of the pipe at the inlet is sufficient to

trace the strong vorticity regions downstream.

On the other hand, for this last flow example, the markers are sub jected to a strong
redistribution during their convection, such that an even correction of the Eulerian
solution can not be ensured. In order get a more even distribution of markers in the
areas where a correction is required, a second Eulerian/Lagrangian interaction strategy

is used.

5.2.2 Upstream integration of trajectories

The second interaction strategy is illustrated in Figure 5.2d) and (5.2¢). For the same
steady swirling flow through a pipe, the markers are initially placed at the center of each
cell and the trajectories and source-terms are integrated upstream until the markers
reach the inlet. The time-step for the integration is again fixed for each marker by
accuracy considerations in the trajectory integration. At the inlet, the Lagrangian state
vectors are found by linearly interpolating the inlet (non-diffused) Eulerian solution to
the markers location. By adding the integrated source-terms to the inlet state vectors
the marker state vector at the center of each cell is determined. The correction procedure
can then take place evenly from the center of each cell. Figure 5.2d) describes the
interaction between the Lagrangian and the Eulerian solvers. The integration of the
source-terms requires interpolations from the Eulerian state vector at time t. Once the
value at the center of each cell is determined, the correction of the Eulerian solution is

performed. Then the Lax-Wendroff algorithm is applied on the corrected solution. At
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this point, the trajectories could be computed again, but it has been found that iterating
the correction step and the Lax-Wendroff algorithm, while keeping the Lagrangian state
vector and the marker trajectories fixed, leads to a faster convergence. On the other
hand, to ensure stability, the trajectories should be recomputed before the Eulerian
solution changes are too large. Also, the trajectories do not have to be traced backwards
to the inlet, but can be stopped at any previous upstream location. If the trajectories
are stopped before the inlet, the corrections will be smaller and the convergence will take
more time since the full correction is obtained only when the cells where the markers
stop have been fully corrected. Again, in order to minimize CPU time, the markers can

be placed only in the flow regions where corrections are required.

For an unsteady flow solution using the upstream integration of the trajectories
means that the trajectories have to be recomputed at each time-step. Again, the tra-
Jectories can be integrated backwards until they reach the inlet or be integrated over
only a few time-steps. At any backward position, though, the Eulerian solution at that
particular time is required to compute the source-terms and the trajectories. Therefore,
in order to minimize the number of Eulerian solutions to store, the trajectories can
be integrated backwards over only one time-step. For unsteady flows, the downstream

integration of trajectories is, therefore, simpler and much more efficient.

In summary, the downstream integration is the more straight forward method, es-
pecially for unsteady flows. For steady flows, the use of the upstream integration of
the trajectories allows a spatially-even correction of the Eulerian solution. This has
met with more success for the calculation of swirling flows and secondary flows. Both
trajectory integrations are further discussed in relation with the markers positioning in

the flow.
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Figure 5.2: Eulerian/Lagrangian interaction procedures for downstream integration of
the trajectories: a) schematic of Eulerian/Lagrangian interaction, b ) unsteady vortex
convection in contraction, c) steady swirling flow in pipe, for upstream integration of
the trajectories: d ) schematic of Eulerian/Lagrangian interaction, e) steady swirling
flow in a pipe.
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5.3 Positioning of the markers in the flow

Since each marker corrects the Eulerian solution locally, the markers need to be located
only in the regions of the flow where a correction is required. This property is particu-
larly useful in terms of CPU time reduction when the flow features are concentrated in
an otherwise smooth background flowfield. In contrast, the ‘cloud-in-cell’ technique of
Baker [5] uses finite-size vortices which influence the entire flowfield and whose geometry

and circulation must be known.

When using a downstream integration, the built-in convection properties of the
Lagrangian technique allow for the steady or unsteady tracing of flow features without
an a priori knowledge of their placement or structure. In the upstream integration of
the trajectories, the area covered by the flow features must be broadly known before.
It is usually possible to determine the general area where corrections are required from
a basic knowledge of the flow. However, in some cases like the secondary flow in a pipe,
the features of interest are so dispersed in the flow that markers have to cover almost

the entire flow area.

If the markers are convecting downstream and locally correcting the Eulerian flow,
weighting factors are required when distributing corrections to the grid nodes because
at any time-step the markers are not distributed uniformly with respect to the Eulerian
grid, (each node may not be influenced by the same number of markers and the distances
from the nodes to the markers are different). Moreover the divergence/convergence of
the trajectories can create holes in the markers distribution. In the case illustrated in
Figure 5.3a), because of the divergence of the streamlines, the markers are redistributed
as they convect from the inlet downstream. This results in some nodes in the field
not being influenced by any markers, whereas other nodes are influenced by several
markers. When the correction is large enough, this uneven correction applied to the

Eulerian scheme can lead to numerical instability.

The use of the second interaction option where the markers are placed at the center
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of each cell and convect upstream eliminates the need for weighting functions. Since the
distribution of the corrections is done from the cell centers, each grid node is influenced
by the same number of markers disposed uniformly. The problem of redistribution of
the markers during their convection is also eliminated as presented in Figure 5.3b).
Nevertheless, as pointed out before, the choice of upstream integration is less suitable

for unsteady flow calculations.

The assumption that the Lagrangian state vector is piecewise constant in each cell
makes the representation of strong gradients inaccurate on very coarse grids. This case is
illustrated in Figure 5.3c) and 5.3d) for the downstream and upstream integration of the
trajectories, respectively. In Figure 5.3¢c) where the markers are convecting downstream,
using the weighting factors results in an average correction for the field cells. This is
clearly inaccurate if the gradient between the Lagrangian state vectors is high. In
the case of upstream integration represented in Figure 5.3d), the presence of only one
marker in each field cell is ensured. However, because of the lack of grid resolution
and the presence of only one marker per cell in the field region, when the markers
trajectories are diverging (in an upstream integration), the final distribution of markers
will be sparse in the inlet region as shown in Figure 5.3d). The inlet information
between the two streamlines is not ‘seen’ or transported by the markers. Both problems
illustrated in Figures 5.3c) and 5.3d) are linked to a lack of grid resolution. The
problem of high vorticity gradients does not appear in the Eulerian solution alone, since
numerical diffusion results in lower vorticity gradients in the field. The Lagrangian
solution, however, is immune to numerical diffusion and presents stronger vorticity

gradients.

The different flow cases treated here reflect the need for distinct marker initial lo-
cations and trajectory integrations. For the unsteady vortex convection, few ma.rkers
are required in the flow and the markers are attached to the flow feature as it convects
downstream. For the steady swirling flow in a pipe, many more markers are required
and are initialized near the inlet cross-section. However, since a strong redistribution

occurs in a downstream integration, one can also attempt an upstream integration of
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Figure 5.3: Markers redistribution during downstream or upstream convection leads to
a) lack of correction of the Eulerian solution, b) even correction, c) average correction
in cell, and d) sparse distribution of markers in the inlet region leading to inaccurate
representation of inlet flow values by the Lagrangian markers.
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the markers by initially locating a marker at the center of each cell. This last procedure
ensures an even correction distribution, but the downstream integration of the trajec-
tories remains much simpler for unsteady flow calculations. The lack of grid resolution
can create problems when tracking the Lagrangiah vorticity upstream or downstream.
Section 9.2 addresses this problem by using a pseudo-viscous term in the Helmholtz

equation in order to smooth out the strong vorticity gradients of the flow.
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Chapter 6

Correction Procedure

This section describes the corrections by which the Lagrangian solution induces
changes in the Eulerian state vector. Since the vorticity and entropy are accurately
described by the Lagrangian equations, these quantities are used to correct locally the
Eulerian solution. For an incompressible flow the vorticity at the marker location is
used to locally correct the Eulerian solution. An entropy correction is used in the

compressible flow cases in addition to the vorticity correction.

The main difference in terms of correction when using the downstream or upstream
trajectory integrations described in the previous section is the location of the markers
in the field. With a downstream integration the markers are not placed uniformly in
the flow. Therefore, the use of weighting factors is required when interpolating the
flowfield values from the grid nodes or from the cell centers to the location of the
marker and vice-versa. When using an upstream trajectory integration the weighting
functions are not required in the correction procedure since each correction occurs at
the initial location of the markers, i.e. from the center of each cell where a marker has
been placed. The correction procedure is described here after for a non-uniform marker
distribution (or a downstream trajectory integration). The simplifications for a uniform

marker distribution (upstream trajectory integration) are also mentioned.
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6.1 Entropy correction

For a non-uniform marker distribution in the field, the Eulerian value of the entropy-
related function S, defined by Equation (4.4) is found at the marker location by linear

interpolation from the nodes according to Equation (5.3) as

8
S.= Y NiSe. (6.1)
k=1

This value is then compared to the Lagrangian value of the entropy-related function S;

at the marker location. The difference
AS=5 -5, (6.2)

is considered as an error in the Eulerian solution at the location of the marker. This
error is then distributed back to the nodes as illustrated in Figure 6.1. When using a
downstream trajectory integration, each node may be influenced by a different number
of markers, so that the resulting change in S at a node is found by a weighted average
over all the markers influencing that node (i.e. all the markers located in cells to which
that node belongs)
55 = Sn((VD)nASm)
T Ne)m

If the markers are located at the cell centers, Equations (6.1) and (6.3) simply become

(6.3)

5.=+3 5, (6.4)
8 k=1
and
1 8
§5=g > ASn, (6.5)
m=1

respectively. The change in the S value at a node is then translated into changes in the

Eulerian flow field variables.

It is necessary to fix four of the five flow variables in order to induce a change in

entropy in the Eulerian solution. If the conservation variables pu, pv, pw and the pressure

88



N

Figure 6.1: Distribution of the error in entropy-related function AS from markers to
nodes using weighted average.

are kept constant on the grounds that these elliptic quantities are well represented on
the Eulerian grid, then the change in § is translated into changes in the conservative

variables as

§p = —7%65 (6.6)
§(pu) = 0 (6.7)
6(pv) = 0 (6-8)
6(pw) = 0 (6.9)
§(pec) = _“—2+—”22+_“’25p (6.10)

Another option, similar to the approach used by Giles for his entropy smoothing
in [23], consists in keeping the vorticity constant during the entropy correction since

the correction in vorticity is the object of a separate treatment. This is achieved by
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updating the density and energy and keeping the velocity and pressure constant. Then

p

= —-— 1
dp 7565 (6.11)
§(pu) = ubp (6.12)
§(pv) = vdp (6.13)
§(pw) = wip (6.14)

2 1 02 4 2
§(pes) = LXL T, (6.15)

2

In practice, both distribution methods give the same results.

6.2 Vorticity correction

6.2.1 Vorticity error at cell centers

The Eulerian vorticity @ is first computed at the center of each cell by assuming a

cellwise constant vorticity. Then
/ 3dV = 3V, (6.16)
\ 4

where the integral is performed over the cell volume V,. Using Stokes theorem the

vorticity is

ol f o 1 I N
5= VudV_Vc/V(vxv)dV_Vc/s(nxv)ds (6.17)

where the surface integral is performed over the cell faces and 7 is the surface unit
normal vector. Thus, summing over the six cell faces, the components of vorticity in

Cartesian coordinates are

1 S _
wy = Vz(wSy—vS,),-

€ i=1
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1 6
wy = o Z(H S, - S.)i, (6.18)

1~ o
w, = -‘ZZ(vS,—uSy)i

On each face, the values for @, 7 and W are obtained from averages over the velocities

at the four corner nodes.

In the case of a non-uniform marker distribution, the Eulerian vorticity is then
interpolated to the location of the marker by using a second local coordinate system
(£*,m*,¢*) based on the eight cell centers that the marker is the nearest to (these 8
cells are easily determined by using the array containing the 26 cell neighbours and the
marker local coordinates (£, 7,()). The £,7, ¢ directly define the (&*,m*,¢*) coordinates

as shown by the example of Figure 6.2 (represented in a 2-D case for clarity).

The 8 tri-linear interpolating functions Ny(£*,7%,(*) to N§(£*,n*,(*) are used to
interpolate the Eulerian vorticity from the eight cell centers to the marker location as

8
G, =Y NG (6.19)

e=1
This value is then compared to the Lagrangian value of vorticity at the marker location

@;. The difference
AG = @) — &, (6.20)

is taken as an error in the Eulerian solution at the location of the marker. This error is
first distributed back to the center of the eight cells by using a weighted average over

all the markers influencing this cell center.

65, = &= .

All the markers influencing a cell center are contained in a volume based on the eight

(6.21)

neighbouring cell centers as illustrated by the dashed area in Figure 6.2. If the markers
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t *=n-1

Figure 6.2: Local coordinate system (£*,7°*, ¢ *) centered on nodes (represented for the
solid line marker) and vorticity error distribution from markers to cell centers.

are located at the cell centers, Equations (6.19) and (6.21) become
3 = Fe, (6.22)
and
63, = A, (6.23)

respectively. Once the change in vorticity at a cell center is determined, it is translated
into changes in the Eulerian velocity vectors at the corner nodes of the cell as described

in the next section.
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6.2.2 Distribution of vorticity error

The error in vorticity in a cell is translated into changes in the velocity components
at the cell nodes. In a 2-D problem, the error in vorticity implies a circulation error
around the cell perimeter. The correction is then distributed evenly between the eight
velocity components at the four cell nodes as described in [20]. In three dimensions, the
vorticity error is a vector, but a similar procedure can be applied for each of the six cell

surfaces.

The error in vorticity A& at the cell center is used to compute an error in circulation

on each face of the cell as
AT = AG - §, (6.24)

where § is the surface vector of the face. Figure 6.3 shows the errors in circulation for the
faces 1 4 and 6 (the nomenclature for the face numbering is described in Appendix B).
On each face, the error in circulation is then used to find velocity corrections at the
four corner nodes as shown in Figure 6.3a). A local coordinate system (o, 7) and a local
node numbering from 1f to 4f is defined on each face as sketched in Figure 6.3b) for
face number 1. The location vector ¥ = (z,y, z) is used to define the unit vectors along
the local coordinates as

Taf — T17 + Fay — Tay Taf — T1p + T3f — Ta5

= — — — — T= — — — — (6.25)
1725 — F15 + T35 — Faf| IFag — 71y + 735 — 725l
The local coordinates ¢ and 7 are then written as
o=8-(F=7), t=7-(F-+.), (6.26)

where 7. refers to the location vector of the geometric center of the face.

The error in circulation can be written as an integral over the face perimeter as
AT = f{ Audz + Avdy + Awdz = }{ Augdo + Au,dr, (6.27)

where Au, Av, Aw are corrections to the u, v and w components of velocity, respectively.
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Figure 6.3: a) Velocity correction (contribution from faces 1 4 and 6 only), and b) local
coordinate system o, T and local node numbering for face number 1.

Au,, Au, are corrections to the u,,u, components of velocity expressed in the local

coordinate system. Using trapezoidal integration, the error in circulation is written as
2AT = (Atugrf + Atgas)(025 — 015) + (Brrf + Arrzg)(25 — T1g) +
(Atoas + Atgay)(0ss — 025) + (Dttrag + Atrgp)(7as — Taf) +
(Attoss + Atoas)(0as — 035) + (Aurss + Duras)(Tas — T35) +
(Atoas + Atipyf)(o15 — Oag) + (Atirag + Atirig) (715 — Tay)
= (Ators — Duosy)(02f — 0af) + (Btioas — Dtioas)(03s — 01y) +
(Atris — Atirgs)(ras — Tag) + (Atirzg — Attrag)(7ss — 115)-  (6.28)

By choice, the error in circulation is translated into homogeneous velocity corrections

for each of the eight velocity components at the four corner nodes. Then

At,, = Auory = Atgay = —Atszs = —Aloss
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= —Aurp = Atrgp = Atlrgp = —Atyyg. (6.29)

Thus, the correction to the components u,, u, is found as

AT

Auo-“r = 7—, where P = O35 — 011 + O2f — 045 + T4f — T2f + T3f — Taf. (6.30)

The transformation from the local face coordinates to the Cartesian coordinates in

Equation (6.27) gives the velocity corrections Au, Av, Aw

AT = }{Au,dcr+Au,.dT
3 oo or or or
=A, 94y + %4 fA_d ardy+ 5o
f “ Tyt g T p Aulde + g dyt 5od)
- }{(Au,‘;— +Au,g dz +}{(A +Au,g dy+}{ Au,_+ Au,g:)dz
= fAudz+Avdy+Awdz,
so that
do or
Au = Auaa-l—AuT%,
do or
Av = Au,— —_—, 6.31
v U 3y +Aufay (6.31)
do or
Aw Au,a +Au.,.$,
where
Q_‘Z _ Zof~ T15+ Taf — T4y ﬁ: Taf — Ti5+ Taf — Tag
oz F2f = 715 + Fag — Fagll” Oz ||Fag — 7y + Fag — 724’
90 _ Y21 — 915+ Y35 ~ Yay O _ Yar— w15+ Y35 — Y2y
By IF2s = T1g + Fag = Fagll’ By~ ||Fag — Tip + 7oy — 74l
9o _ - nstzy— 2y 21_’= 245 — 21§ + Z3f — 224
0z 725 — Fig + Fag — Fagll” 0z ||fag — Fip + 7 — 7oy

At a node, the contributions to the velocity change from each face are added to give the
final velocity correction since, if the faces are perpendicular to each other, the velocity

correction on one face does not affect the circulation on another face. Each node receives
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Figure 6.4: Solid-body rotation distribution of error in vorticity to velocity components.

contributions from three faces for a given cell. The final node velocity correction is then

found by adding the contributions from the eight cells surrounding the node.

This velocity correction method is analogous to the use of a solid-body rotation
assumption where the change in vorticity at a cell center induces changes in velocity

components at the 8 nodes of the cell as
6% = 6Q x 7, (6.32)

where the change in angular speed 6€, in the cell is defined as half the vorticity error
in the cell

. = 360, (6.33)

and 7. is the vector connecting the node to the center of the cell as illustrated in
Figure 6.4. The analogy between the previous distribution procedure and the solid-
body correction does not hold if the cell faces are of different shapes. Using the pre-
viously described correction distribution ensures identical corrections for faces of same

(area/perimeter) ratio, independently of the face shape as illustrated in Figure 6.5.
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Figure 6.5: Distribution procedure ensures identical velocity correction for faces of
same (area/perimeter) ratio, independently of face shape as opposed to the solid-body
rotation distribution (dotted line vectors).

Instead, the correction obtained through a solid-body correction does not lead to an
identical correction in every velocity component as indicated by the dotted arrows. In
the case of a sheared cell, since the local coordinate system is not orthogonal, the correc-
tions are different from the orthogonal case. However, the right correction in circulation

and vorticity are still enforced.

For an incompressible flow, summing the contributions from each face described by

Equation (6.31) and averaging over the eight surrounding cells, together with
ép* =0, (6.34)

give the changes in the Eulerian conservative variables due to the vorticity correction.
For a compressible flow, the resulting changes in the conservative Eulerian variables are

found by

§p = 0, (6.35)
§(pu) = pébu, (6.36)
§(pv) = pév, (6.37)
S(pw) = péw, (6.38)
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§(peg) = 0. (6.39)

The actual implementation of the correction procedure is performed in two steps. First,
the contribution from each surrounding face to a node is computed for a unit value
of AT on the face (using Equations (6.30) and (6.31) with AT' = 1). For example,
in Figure 6.3 node 2 receives contributions from faces 1, 4 and 6. By using a unit
value for AT, this step reduces to a simple metrics calculation required only once at the
beginning of the computation. Then, at each iteration in time, the error in vorticity
at the cell center is determined by Equation (6.21) or (6.23) and the the contributions
for a unit circulation are multiplied by the actual value of AT for each face. Then the -
contributions of the three faces are summed for each node. The velocity correction at
a node is then found from by adding the corrections due to the eight surrounding cells.

Since this last step involves a loop over the cells, it is fully vectorizable.

6.3 Boundary conditions for velocity correction

The nodes located on the limits of the domain receive contributions from less than eight
cells and, therefore, require special treatment. The imposition of boundary conditions
is performed during the first step process for nodes located on domain boundaries and

results in modifications of the contributions to these particular nodes.

In this work, four types of domain boundaries are present : inlet, exit, wall and
symmetry-plane. The correction of velocity for the nodes located on an inlet boundary
is set to zero, since the Eulerian values are exactly set through the inlet boundary
condition. The nodes located on the exit surface miss the contributions from the cells
placed downstream of the exit surface. Pseudo-cells are defined with the same error
in vorticity at their center than the one for cells lying inside the domain as illustrated
in Figure 6.6a). This is the method used for the flow over a three-dimensional wing
where the trailing vortex axis crosses the exit boundary almost perpendicularly. For

the secondary flow calculation in a circular pipe, the axis of the secondary vortex crosses
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Figure 6.6: Correction in vorticity for pseudo-cells placed at a) an exit surface, b) a wall
surface, and c¢) a symmetry surface.

the exit boundary with a smaller angle and a better approach is to use the same type of
exit boundary condition as the Eulerian solver. The 1-D characteristics theory is then

applied to a vector formed by the corrections in velocity components.

The imposition of wall and symmetry-plane boundary conditions uses pseudo-cells

as sketched in Figures 6.6b) and 6.6¢), respectively.

If ¢ is the local coordinate normal to the exit,wall or symmetry-plane, then

ABezyy = (Awg, Aw,, Aw), (6.40)
A‘D’wall = (_Aw{, "Awna Aw()’ (641)
Absymm = (—Bwg, —Aw,, Awe). (6.42)

The corresponding velocity corrections are sketched in Figure 6.7 for faces 6 , 4 and

1, respectively. The additional velocity corrections due to the presence of the pseudo-
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cells are represented as dashed vectors. Figure 6.7a) shows the case of an exit boundary
condition whereas the case of a wall or symmetry-plane boundary condition is presented

in Figure 6.7b).

6.4 Discretisation error for velocity correction

The discretisation error obtained by using the Lagrangian correction on a finite-size
grid is estimated here for the case of a linear vorticity profile (say a Poiseuille flow in a

channel). The vorticity is written as a linear function of channel height z as
w=kz, (6.43)

where k is a proportionality factor. In the Lagrangian technique, the vorticity is assumed
to be a constant within each cell and takes the value at the cell center. By expanding
the vorticity as a function of the channel height into a Taylor expansion to the first

order, the discretisation error e, in a cell is

ow
€w = EAZ ~kl, (6.44)

where Az is the distance to the cell center and [ is a representative cell length. Using

Equation (6.30), the velocity correction Au is related to the vorticity correction as

ATl AwS
Au = —F = T ~ Aw l. (6.45)

Thus, the discretisation error in velocity correction e, is

eu~ €l (6.46)

and using Equation (6.44), the error in velocity is shown to be second-order on the

finite-size grid

e, ~ k12 (6.47)
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Figure 6.7: Contribution to velocity corrections from faces 6, 4 and 1 in the case of a)
exit boundary condition, and b) wall or symmetry-plane boundary condition (additional
contributions from pseudo-cells are represented as dashed line vectors).
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6.5 Iterative procedure for the correction of vorticity

The previous section’s subject was the translation of an error in vorticity, defined at the
cell center, into errors in circulation around each face of the cell, and finally into velocity
corrections at the corner nodes. This section shows why a ‘recursive’ correction process
is required in order to obtain the correct circulation around each cell. The different
steps of the iterative correction procedure are presented as well as a numerical study of

the process’s convergence rate for a simple two-dimensional case.

As will be shown, the vorticity correction requires an iterative procedure. For steady
flows, the vorticity correction is converging along with the pseudo time-marching Eu-
lerian scheme and only one step is usually required for the vorticity correction at each
Eulerian iteration. In the case of an unsteady flow, the vorticity correction should be
iterated until convergence for each Eulerian time-step. However, using only one step of

the vorticity correction at each Eulerian iteration has given satisfactory results.

In this study, the correction is applied recursively on an initial solution without
taking any Eulerian steps. However, the accuracy of the Eulerian solution enters into

the analysis of the convergence rate of the combined Eulerian/Lagrangian scheme.

Figure 6.8 shows a two-dimensional numerical domain with three cells in each direc-
tion. The initial solution is such that the circulation in each cell is zero. The desired
circulation in each cell is assumed to be unity. Therefore, a uniform circulation cor-
rection is imposed for each cell (AT = 1). In the first step, velocity corrections are
determined for each cell such as to satisfy the circulation correction according to Sec-
tion 6.2.2. The resulting velocity correction at a node is then found by adding the
contributions from the surrounding cells. When all the contributions are added, the
circulation in each cell is modified. Hence, a recursive correction is required. In the
second step, the modified circulation in each cell is compared to the desired circulation
in order to define a new circulation error. This is in turn translated into new velocity

corrections at the corner nodes. The procedure is iterated until the correct circulation
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in each cell is obtained.

Figure 6.9a) shows the maximum error in circulation AT, in the domain as a
function of the iteration number n for six grid sizes (2 x 2 to 33 x 33 nodes), each grid
having twice as many cells in each direction than the previous one. ATl,,,, is normalized
by the initial constant error in the domain AT;,;;.;. The number of iterations that
the information takes to travel from the boundaries to the center cell is shown by a
constant error in circulation during the first iterations (the number of iterations with
constant error corresponds to half the domain size in one computational direction). The
convergence rate is slower with increased grid size. However, each time the grid size is
increased, the initial error in the domain is reduced by a factor 4 since the Lax-Wendroff

scheme is second-order accurate.

In Figure 6.9b), the ratio of the maximum error in circulation between two con-
secutive iterations is shown to converge to a value dependent only on the grid size.
Figure 6.10 displays the behavior of the difference between these values and unity (1
represents no convergence) as a function of the mesh size h, plotted in a logarithmic
scale. This measure of ‘how slowly the correction procedure is converging’, is shown
to vary as a second-order function of the mesh size. However, the initial error given
by the Eulerian scheme is also a second-order function of the grid size. Thus, as the
convergence rate of the iterative procedure goes to zero at the limit of an infinite grid
resolution, the truncation errors due to the Lax-Wendroff scheme vanish too. Thus, the

resulting solution is still consistent.

The extension to three dimensions is straight forward. As mentioned earlier, the
velocity corrections on one face do not induce any circulation on another face if the
faces are perpendicular to each other. Thus, the results for a two-dimensional case
remain unchanged in three dimensions. (However, the velocity corrections have to be
divided by a factor 2 for the ‘interior’ faces since when performing the three-dimensional
vorticity correction in a unstructured fashion by a loop over the cells, each face (except

the boundary faces) is taken twice into account). Also, the convergence rate remains
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unchanged if the cells faces are rectangular instead of square.

In the steady-state calculations, at each iteration the corrections can be multiplied by
a factor smaller than 1 in order to limit the perturbations to the Eulerian solution. In the
flow over a 3-D wing, the magnitude of the correction in vorticity for the trailing vortex
is of the same order as the basic vorticity in the flow. If the corrections are limited, the
convergence rate to the correct circulation around each cell is slower and more iterations
are required between the Eulerian and the Lagrangian solutions. Another option consists

of under-relaxing the circulation corrections by using the ‘old’ circulation correction
AT™! = AT™ + Ry(AT™! — AT™), (6.48)

where Ry is a relaxation factor smaller than 1 and n and n + 1 refer to the old and

present iterations of the correction procedure, respectively.
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Figure 6.8: Recursive vorticity correction: error in circulation in cells and corresponding
velocity corrections.
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Figure 6.9: Convergence of recursive vorticity correction: a) maximum error in circula-
tion in domain (referenced to initial error in circulation) as a function of the iteration
number n and b) ratio of the maximum circulation error between two consecutive iter-

ations.
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Chapter 7
Vortex Preservation Test Case

The convection of a Lamb vortex in a three-dimensional uniform flow is computed
as a vortex preservation test case in a compressible unsteady flow field. The vortex
convects perpendicularly to its axis of rotation along a straight channel over a distance
of approximately 50 core radii. The tangential velocity vg in the frame of reference of
the Lamb vortex is given by

Vo= —— (1 - e‘({i)z) , (7.1)

T 27r

where T is the vortex circulation, a is the vortex core radius and r is the distance from
the center of the vortex. The initial Eulerian and Lagrangian state vectors are obtained
by superimposing the vortex on the uniform background flow. The entropy is found as
a function of the radius by numerically integrating the radial entropy gradient given by

Crocco’s relation

where vg is given by Equation (7.1) and the stagnation enthalpy ho, is assumed con-
stant in the vortex frame of reference. Once the entropy-related function S defined by

Equation (4.4) is found, the density and pressure follow from

1
_ (11 1, )‘7—
o= (55 o= 5e0) 70 (7.3)
-1 1
p = p—-—77 (hov—ivé) (7.4)
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Figure 7.1: Computational grid for vortex preservation case (129 x 17 X 9 nodes).

A uniform flow Mach number of 0.7 and a value for I'/a of twice the freestream stag-
nation speed of sound are used in this calculation. The resulting maximum tangential

Mach number in the frame of reference of the vortex is approximately 0.2.

The grid used for the calculation is composed of 129 X 17 x 9 nodes and is shown
in Figure 7.1. The channel width and height are 1/8 and 1 /16 of the channel length,
respectively. The mesh spacing is uniform and equal in each direction and chosen such

as to have four cells across the vortex core diameter, hence

A A A
2T _S2Y_22_, (7.5)
a a a

A ‘no-flux’ boundary condition is imposed on the top and bottom walls of the channel.
On the inlet, exit and side surfaces of the channel, the exact solution of the convecting

vortex is imposed. This allows a minimization of the size of the computational domain

(the half-width of the channel measures only four vortex core radii).

The results are presented on a mesh surface at channel mid-height (the solution

is independent of the channel height). The initial and final marker distributions for
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Figure 7.2: a) Initial distribution of markers with core size and b) final distribution.

this calculation are represented in Figures 7.2a) and 7.2b), respectively. The markers
are initially placed in the vortex neighbourhood with one marker per cell. Additional
markers are placed on the vortex axis (only 17 markers are located in the vortex core
in a 2-D plane). The total number of markers for this calculation is 1160. The Eulerian
solution and the Eulerian/Lagrangian solution are performed on the same grid. For this
unsteady flow case, the same time-steps are used in the Eulerian and Lagrangian integra-
tion scheme, hence the markers convect at the same speed as the vortex. The Lagrangian
state vector consists of the position, the vorticity and the entropy-related function S.
The trajectories are integrated downstream and the computation of the source-terms
for the vorticity gives no contribution due to the absence of three-dimensional effects.
The interaction sequence between the Eulerian and the Lagrangian solvers follows the
procedure described in Section 5.2.1. Only one correction step is performed at each

Eulerian iteration at the current location of the markers.

Figures 7.3a), 7.4a) and 7.5a) show the initial pressure, vorticity and $ function
contours, respectively, when the vortex is located at the inlet of the channel (all flow
values are referenced as described in Section 2.3). After the vortex has traveled approxi-
mately 53 core radii, the final pressure, vorticity and $ function contours are represented
in Figures 7.3b), 7.4b) and 7.5b) when using the Eulerian formulation alone and in
Figures 7.3c), 7.4c) and 7.5¢) when using the Eulerian/Lagrangian scheme. The initial

velocity vectors (after subtraction of the convection speed) are plotted in Figure 7.6a).
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The vortex at the end of the channel is represented in Figures 7.6b) and 7.6c) for the

Eulerian solution and the Eulerian/Lagrangian solution, respectively.

A strong diffusion is observed in the Eulerian solution, whereas the addition of the

Lagrangian correction is successful in preserving the vortex structure and intensity.

This is substantiated by looking at the velocity (minus convection speed) and pres-
sure profiles across the vortex (after traveling 53 core radii) represented in Figures 7.7
and 7.8. Whereas the diffusion of the Eulerian solution is obvious, the vortex core
radius and vortex strength remain almost unchanged when using the Lagrangian cor-

rection procedure.

Figure 7.9 shows a measure of the numerical diffusion as the decay rate of the pressure

coefficient Cp, at the center of the vortex
Cp, = -’11'"—";1?33 (7.6)

5P(g)?

where Pnin is the pressure at the center of the vortex and ps is the pressure of the
background potential flow. The exact solution corresponds to a constant Cp, coefficient.
For the same grid density, the standard Eulerian scheme leads to a strong diffusion
of the vortex during its convection whereas a substantjal improvement in the vortex
preservation is obtained when using the combined Eulerian/Lagrangian scheme. The
ragged aspect of the Cp, curve (computed as a cell-average value) when using the
Lagrangian procedure is due to the vortex passing over the Eulerian grid. The difference
between the Eulerian/Lagrangian curve and the exact curve is due to discretization
errors when representing the vorticity and entropy of the vortex by a finite amount of

markers placed at the cell centers.

If the accuracy of the solution is measured by monitoring the pressure losses at the
center of the vortex, the Eulerian/Lagrangian scheme leads to a solution approximately
4 times more accurate than the Eulerian solution alone after the vortex has traveled 53

core radii. In order to gain a factor 4 in accuracy a second-order accurate scheme such
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as the Ni-Lax-Wendroff scheme would require a grid twice as fine in every direction.
This would lead to an increase in CPU of a factor 16 (a factor 2 for every spatial
direction times a factor 2 for the corresponding decrease in time-step). In comparison,
the present Eulerian/Lagrangian scheme requires only ~ 30% increase in CPU over the

basic Eulerian solution.
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a) b) c)

Figure 7.3: Pressure contours at channel mid-height, a) initial, b) final with Eulerian
scheme and c) final with Eulerian/Lagrangian scheme (increment = 0.0025).

a) b) c)

Figure 7.4: Vorticity contours at channel mid-height, a) initial, b) final with Eulerian
scheme and ¢) final with Eulerian/Lagrangian scheme (increment = 2.0).
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Figure 7.5: Contours in S (entropy related function) at channel mid-height, a) initial,
b) final with Eulerian scheme and c) final with Eulerian/Lagrangian scheme (increment

Figure 7.6: Velocity vectors at channel mid-height, a} initial, b) final with Eulerian
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scheme and c) final with Eulerian/Lagrangian scheme.
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Figure 7.7: Velocity profiles across vortex for exact, Eulerian and Eulerian/Lagrangian
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Figure 7.8: Pressure profiles across vortex for exact, Eulerian and Eulerian/Lagrangian
solutions.
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116






Chapter 8

Preservation of a Turbulent Inlet Velocity

Profile in a Pipe

The preservation of a turbulent inlet velocity profile in a straight pipe is analogous
to the preservation of the Lamb vortex in a straight channel described in Chapter 7.
Both the Lamb vortex and the turbulent velocity profile are characteristics of a viscous
flow. The exact inviscid solution of the flow problem states that the velocity profile
Is not a function of the convection distance. As in the case of the Lamb vortex, the
interest here is to see how these viscous flow features represented though the velocity
profile are affected by the numerical diffusion of the Eulerian scheme. The turbulent
velocity profile is provided as the inlet boundary condition of the calculation. As the
viscous effects are not taken into account in the Euler equations, each flow particle
should conserve its speed as it convects downstream. When using an Eulerian solver,
the changes in the velocity profile are the result of numerical diffusion. The Lagrangian
correction technique is then applied in order to recover the exact velocity profile at
any station along the pipe. This case bears similarity with the convection of a fully
developed turbulent flow in that the velocity profile is not a function of the convection

distance.

This test case is a preamble to the computation of secondary flows in bent pipes
of Chapter 11 where the source for the secondary flow creation is introduced as a non-
uniform inlet stagnation pressure (obtained through a non-uniform inlet velocity pro-

file), and where the Euler equations are used to predict the subsequent secondary flow
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Figure 8.1: Straight circular pipe computational grid (161x25 nodes).
development.

Since the flow is incompressible ‘and steady, the Euler equations are modified by
the artificial compressibility method as described in Section 2.2. The Eulerian and the
Eulerian/Lagrangian solutions are computed using the same grid, shown in Figure 8.1,
with 161 nodes on an axial cross-section and 25 cross-sections equally spaced along the
pipe length. Since the flow is symmetric, the computations are performed on only half
of the pipe. The ratio of pipe length to pipe radius is 5.52. The inlet cross-section shows
the unstructured grid with an O-type grid near the pipe wall and an H-type grid near
the center of the pipe. This type of combined grid is chosen for the pipe geometries over
the standard O-grid which presents a singularity at the pipe center.

In the case of swirling flow in pipes or secondary flow calculations, the Lagrangian
solution technique, using an upstream integration of streamlines and markers placed at
the center of each cell, is preferred over the downstream integration technique, since the

vorticity is diffused in the whole domain.

The streamlines are also traced backward in the present test case, with two integra-
tion steps per cell and are recomputed each 25 iterations of the Eulerian solver. The
correction procedure is applied only once every Eulerian iteration and the corrections are

multiplied by a factor 1/4 in order to limit the perturbations imposed on the Eulerian
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solution.

A fully developed turbulent velocity profile is assumed at the pipe inlet cross-section.

The inlet velocity profile corresponds to a Reynolds number of

d
Re = l‘y- = 2.48 x 10° (8.1)

based on a mass-flow averaged velocity % of 2.31 m/s (chosen here as the reference veloc-
ity) and on the pipe diameter d of 0.1023 m. The kinematic viscosity v is 0.952 x 10~
m?/s. The pipe radius R is chosen as the reference length. The inlet velocity profile is
determined by the ‘universal velocity distribution law’ for smooth pipes and very large

Reynolds numbers given in [62]
ut = = = 5.75log;o(y") + 5.5, (8.2)
u

where u* is the friction velocity defined as

ut = (Ti)% , (8.3)

yt="—, (8.4)

where y is the distance from the wall of the pipe.

Since the flow computation is inviscid, the velocity at the wall must take a finite value
called the ‘slip velocity’. Imposing a zero velocity value at the wall would tend to produce
non-physical reverse flow under any small positive pressure gradient perturbation. In
order to define the slip velocity, Prandtl’s universal law of friction for smooth pipes
given in [62] is used to provide a relationship between the coefficient of friction A

A=8 (“—')2 (8.5)

u

and the Reynolds number as

= 2.0log;o(Rev/A) — 0.8, (8.6)

Si-
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Figure 8.2: Universal velocity distribution law for smooth pipes.

For a Reynolds number of 2.48 x 10%, this relation gives A = 0.01503. The shear stress

at the wall 7, and the friction velocity u* are now found by

A
Tw = gpﬁz, (8.7)

and Equation (8.3). The slip velocity is chosen as the velocity just outside of the viscous

sub-layer at a y* value of 30.

Using the values for y* and u*, the slip velocity is found from the ‘universal velocity
distribution law’ given in Equation (8.2). The resulting slip velocity u,;, is equal
to 60.7% of the flow averaged velocity at a distance from the wall of 0.0286% of the
pipe radius. The universal velocity distribution law for smooth pipes is represented in

Figure 8.2 as well as the slip velocity location.
In Figure 8.3, the velocity profiles on the exit cross-section are plotted as a function

of the normalized radius 7/R for the exact solution (inlet velocity profile), the Eule-

rian solution and the Eulerian/Lagrangian solution. Due to the numerical diffusion
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Figure 8.3: Velocity profiles at outflow cross-section.

of the scheme, the sharp gradients near the pipe wall are smoothed out in the Eule-
rian solution. With the Lagrangian correction scheme, this effect is canceled and the

Eulerian/Lagrangian solution and the exact solution are within drawing accuracy.

As for the unsteady flow case, the Lagrangian correction could be applied during
the pseudo-unsteady convergence of the Eulerian solution. However, for the steady flow
cases, it is more effective in terms of CPU reduction to apply the Lagrangian correction
once the Eulerian solution has converged (or nearly converged) since the convergence of

the Eulerian solution takes more iterations than the Lagrangian correction convergence.

For this particular test case, the combined Eulerian/Lagrangian solution requires
only ~ 60 iterations to converge (from the converged Eulerian solution), whereas the
Eulerian solution requires ~ 1000 iterations to converge (from a constant flow initial
solution) to a maximum residual of 1 x 10~5. The Eulerian solution, based on the

Lax-Wendroff scheme and the artificial compressibility concept, takes ~ 274 x 10~

121



seconds /iteration/grid node. In comparison, the combined Eulerian/Lagrangian scheme
takes ~ 8.0 seconds/iteration for this particular frequency of trajectory integration and
marker number. The CPU increase due to the Lagrangian correction for this test case

is ~ 30% of the basic CPU required for the Eulerian solution.
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Chapter 9

Swirling Flow in a Pipe

Another preamble case to the secondary flow computation in bent pipes of Chap-
ter 11 is the analysis of a swirling flow in a straight circular pipe. A swirling flow in a
straight pipe superimposed on a uniform axial velocity is chosen as a representation of
the convection of the secondary flow in the straight section of pipe downstream of the

bend exit cross-section.

The model for the swirling low and the Eulerian and Eulerian/Lagrangian solutions
are presented in Section 9.1. In Section 9.2, the strength of the swirling flow is increased
and the vorticity field is shown to concentrate by the phenomenon of vorticity gradient
augmentation to a point where the vorticity field becomes inaccurately represented
when using the fixed Eulerian or Lagrangian spatial discretization. As a result, the
convergence of the combined Eulerian/Lagrangian solution is affected. The sources for
the vorticity concentration are identified in Section 9.2.1 and a solution to the problem is
proposed in Section 9.2.2 as the introduction of a pseudo-diffusion term in the Helmholtz

equation.

9.1 Swirling flow model and solution

As in the case of the secondary flow, the swirling flow of this example is composed of

two counter-rotating vortices and, since the solution is symimetrical, it can be performed
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on a half-pipe geometry. The ratio of pipe length to pipe radius is L/R = 5.52.

The calculations are performed on a coarse grid with 25 cross-sections equally spaced
along the pipe length and 125 nodes on an axial cross-section and on a fine grid with 49 x
384 nodes. Both grids are shown in Figure 9.1. The present model for the inlet velocity
profile is characterized by high cross-flow velocities near the pipe walls and the half-pipe
symmetry surface according to the results found in bent pipes in Chapter 11. The inlet
cross-flow velocities are found from the Poisson equation relating the streamfunction ¥

to the axial vorticity w,
Vi = —w,, (9.1)
where the streamfunction is defined by
y? + 22

¥ = —Cy(]. - T). (9.2)

R is the pipe radius and C is a constant characterizing the strength of the swirling flow.

The cross-flow velocities v and w are found by

0¥ 2Cy:z v 3y? + 22
= = = —— = 1—-—1}. .
9z R YT Ty C( R? (9:3)
The resulting axial vorticity distribution is linear with respect to y
—-8Cy
Wy = T. (9-4)

The first chosen cross-flow strength is such that the maximum inlet cross-flow velocity
is 40% of the uniform convection velocity, i.e. C = 0.2. The inlet cross-flow velocities
and axial vorticity distribution of the coarse grid solution are shown in Figure 9.2. Since
the vorticity is obtained as a cell-averaged quantity, the minimum and maximum inlet
axial vorticity levels are different on the coarse and the fine grids. Nevertheless, the
differences in minimum and maximum axial vorticity levels between the two grids are

less than 3% of the maximum axial vorticity.

The Eulerian and the Eulerian/Lagrangian calculations are performed on both grids.

In the combined scheme, the markers are initially placed at the center of each cell and
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Figure 9.2: Case C = 0.2: Cross-flow velocity vectors and axial vorticity on inlet cross-
section for coarse grid calculations.

the streamlines are integrated upstream with approximately two steps per cell. The
streamlines are recomputed every 50 iterations of the Eulerian solver. The correction
step is applied only once at each Eulerian iteration and the corrections are multiplied by
a factor 1/4 in order to limit the perturbations to the solution during the pseudo-time

integration process.

Because of the induced velocities of one vortex on the other and the presence of
the pipe wall, the center of each vortex is moving in an helicoidal pattern resulting in
an alteration of the inmitially linear vorticity distribution. Figure 9.3 presents the axial
vorticity contours on three cross-sections along the pipe for the Eulerian solution and the
Eulerian/Lagrangian solution on the coarse grid and the fine grid. As the distance along
the pipe increases, the constant axial vorticity contours undergo a rotation (stations
z/L = 0.08 and z/L = 0.52). At the symmetry surface, the axial vorticity must be
zero since dw/8y = 0 and v = 0 in the symmetry surface. This condition forces the
axial vorticity contours to concentrate near the symmetry surface (stations z/L = 0.52
and z/L = 0.98). The effect of numerical diffusion near the symmetry surface spreads
the gradient of vorticity on approximately two cells in the Eulerian solutions. With
the Lagrangian solution, the gradient of vorticity is concentrated on approximately

only one cell and does not appear in the plots since the solution for the vorticity is
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drawn only until the last cell center near the symmetry. The effect of the numerical
diffusion is clearly seen in the coarse grid Eulerian solution as a spurious curving of the
axial vorticity contours near the pipe wall (inducing smaller velocities on the pipe wall
and therefore smaller circulation around the pipe). Using the Lagrangian correction,
the axial vorticity contours are in a very good agreement with the Eulerian solution
on the fine grid, especially near the pipe wall. The fine grid Eulerian solution still
exhibits a small numerical diffusion effect near the pipe wall. When using the Lagrangian

correction on the fine grid, this effect is eliminated.

The circulation T around a closed curve is an integral value used to quantify the
numerical diffusion as a function of the distance along the pipe. In a barotropic flow
field where viscous effects are non-existent or can be neglected and if the forces acting
on the fluid are conservative, Kelvin’s theorem states that the circulation around an
arbitrary closed curve moving with the fluid should remain constant. Using the material

derivative, this is expressed as

Dr
55 =0 (9.5)

The convection of a material curve is obtained by setting ‘convective’ markers in a closed
curve pattern at some location in the flow field once the solution has reached its steady-
state. The material curve is deformed as each marker convects downstream with the
local flow. Since these markers are used only for particle tracing purposes, they do not
induce any correction in the Eulerian flow field. The tracing of the ‘convective’ markers
is similar to the technique used for the ‘corrective’ markers trajectories integration.
However, pseudo-time steps can not be used since the time-steps used for the integration
of the streamlines have to be identical for every convective marker. The circulation is

found by integration around the material curve as

T= fa- dr, (9.6)

where the integral is obtained by trapezoidal integration over the total number of con-
vective markers. The material curve can be traced downstream or upstream and addi-

tional convective markers are added to the material curve if the distance between two
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Figure 9.4: Initial and final circulation contours.

consecutive markers becomes too large due to the divergence of the streamlines.

The chosen closed curve is initially placed around the inlet cross-section and the
convective markers are traced downstream. Figure 9.4 shows the position of the initial
and final locations of the material curve. The curve is initially located near the pipe wall
where the largest numerical diffusion occurs. Figure 9.5 shows the circulation around
the closed curve as a function of the convection distance along the pipe (the average
location over all the convective markers). The Eulerian solution on the coarse grid
exhibits the largest circulation change. By using the combined Eulerian/Lagrangian
scheme on the coarse grid, the changes in circulation are reduced by a factor ~ 4 near
the pipe exit. The circulations for the fine grid Eulerian solution and the fine grid
Eulerian/Lagrangian solution are comparable since the correction is much smaller than
in the case of the coarse grid solution. In the case of the fine grid solutions, the amount
of diffusion is too small to judge the effectiveness of the Lagrangian correction (the
comparison would have to be performed on a longer pipe in order to get a more diffused

Eulerian solution).

The coarse grid Euler solution requires ~ 2000 iterations to converge (from a con-
stant flow initial condition) to a maximum residual of ~ 1x10~5. The Eulerian /Lagrangian
solution takes only ~ 275 iterations to converge (starting from the converged Eulerian

solution). The computations are performed on a Stardent GS-2000 in vector mode. The
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along the pipe, a) coarse grid Eulerian solution, b) coarse grid Eulerian/Lagrangian
solution, c)fine grid Eulerian solution, d) fine grid Eulerian/Lagrangian solution.
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combined scheme takes 2.8 seconds/iteration/node on average (for the marker number
and frequency of streamline integration described above). Thus, in the coarse grid case,
the increase in CPU due to the introduction of the Lagrangian correction is ~ 33%
of the basic Eulerian solution. In comparison, the fine grid Eulerian solution requires
~ 16 times more CPU than the basic coarse grid Eulerian calculation (starting from a

uniform flow solution).

9.2 Vorticity gradient augmentation

As the strength of the swirling flow increases, the gradients of vorticity shown in Fig-
ure 9.3 near the exit of the pipe become stronger. The evolution of the scalar field in a

flow with high vorticity concentration has been previously studied by Knio in [38].

The phenomenon of vorticity gradient augmentation is intensified when the La-
grangian correction is applied. Indeed, due to numerical diffusion, the Eulerian solution
tends to smooth out strong gradients, which is not the case when using the Lagrangian

correction.

The intensification of the vorticity gradient is illustrated in Figure 9.6 where the
strength of the swirling flow has been increased by a factor 1.5 over the previous test
case (i.e. C = 0.3). The axial vorticity contours are plotted at stations along the pipe
in Figures 9.6a) and 9.6b) for the coarse grid Eulerian and Eulerian/Lagrangian solu-
tions and in Figures 9.6c) and 9.6d) for the fine grid Eulerian and Eulerian/Lagrangian
solutions, respectively. When using the Lagrangian correction on the coarse grid, the
gradient of vorticity at the exit of the pipe is increased compared to the Eulerian so-
lution alone. A strong vorticity gradient region of a few cells width is created in the
Eulerian/Lagrangian solution separating a high vorticity region from a low vorticity re-
gion. The same behavior is seen in the fine grid solutions, but the gradient of vorticity

is more intense and spread over one cell only in the Eulerian/Lagrangian solution.

131






In Section 9.2.2, the strength of the swirling flow is further increased (to C = 0.6)
and the width of the vorticity gradient region decreases. The vorticity field becomes
poorly represented (either on the fixed size grid in the Eulerian solution or by markers
located at cell centers in the Lagrangian scheme). In turn, the poor sampling rate of
the vorticity field leads to inaccurate corrections of the Eulerian solution and affects the

convergence of the combined Eulerian/Lagrangian scheme.

In Section 9.2.1, the strain field and the vorticity field are first identified as the
sources for the vorticity gradient augmentation. In Section 9.2.2, a solution to the
problem is proposed as the introduction of a pseudo-diffusion term in the Helmholtz

equation.

9.2.1 Sources for vorticity concentration

In Figures 9.7a) and 9.7b), the convergence of three streamlines from inlet to exit is
shown for the coarse grid Eulerian and Eulerian/Lagrangian solutions in the case of the
swirling flow strength corresponding to C = 0.3. The streamlines are chosen such as to
end up in the strong vorticity gradient region at the exit of the pipe. Since for this test
case the source-terms for the vorticity are small (as will be shown later), the vorticity
carried by the material particles along the streamlines is essentially constant and equal
to the inlet vorticity at the inlet location of the markers. Because of the merging of the
streamlines, the inlet vorticity assigned to each of the three markers differs by a large
amount. When the streamlines merge along the pipe, a strong gradient in vorticity is
created. When using the Eulerian scheme, the vorticity along the streamlines does not
remain constant because of numerical diffusion and the creation of the strong vorticity
gradient is inhibited. When the Lagrangian correction is used, the diffusion is reduced,
and consequently the solution presents stronger gradients of vorticity. This effect is
accentuated when using the Lagrangian correction since, the three streamlines show a
stronger convergence in the Eulerian/Lagrangian solution than in the Eulerian solution

alone due to the stronger swirl effect.
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Figure 9.7: Case C = 0.3: Frontal view of 3 streamlines drawn from inlet to exit of the
pipe, a) Eulerian solution, b) Eulerian/Lagrangian solution (i=inlet, e=exit).

The creation of strong vorticity gradients along the pipe can be explained from
the action of the strain and vorticity field by using the Helmholtz equation giving the
convective change in vorticity for an incompressible flow as

% = (@ V)% (9.7)
This equation states that the evolution of the vorticity attached to a particle convecting
in an incompressible flow is governed by the generation of tilting and stretching source-
terms along the particle trajectory. If the right-hand side terms (source-terms for the

vorticity} are small, each component of & will approximately behave as a non-diffusive

quantity as

~ 0. (9.8)

2|8

By taking the gradient of Equation (9.8), relations are found which describe the behavior

of the vorticity gradient for a convecting particle in a steady flow.

D(Vwz) g Dw, Oudw, Oviw, Owidw,
Dt =(7-V)Vu, =V Dt 8rF 8z OF 9y OF 8z’ (9-9)

~0
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D(Vw,) Dwy Oudwy, 8vdw, Owdw,

Dr - (T V)V =V Dt 97 8z 07 0y  oOF 0z’ (9-10)
~0
D(Vw,) o Dw: Oudw, Ovdw, Owiw,
T~(v-V)sz—VDt 97 8z 87 by  OF 0z (9-11)
~0
Or
D(Vw,) _ -
—— = —(Vw, - V)7 - Vu, x &, (9.12)
Dt
% = —(Vwy - V)7 - Vw, x @, (9.13)
D(Vw,) L .
T = —(sz - V)‘U -V, X 4. (9.14)

Hence, if a scalar quantity (here any component of vorticity) remains approximately
constant along a streamline, its gradient is governed along a streamline by both the
local strain field V& and the local vorticity (rotation) field .

In the case of a swirling flow through a straight pipe, the main component of vorticity
is in the axijal direction (z). The axial vorticity and the gradient of axial vorticity along

a streamline can be written as a function of convection time ¢t. From Equation (9.7)
wal(t) - wa(0) = /ot((a-V)u)dt = 5., (9.15)
and from Equation 9.12
Vws(t) - Vg (0) = /;(_(vw, V)T~ Vi, X &)dt = Sy... (9.16)

These equations represent the increase in axial vorticity and axial vorticity gradient
along a streamline. Next, the right-hand side terms of Equation (9.15) and of the z-
component of Equation (9.16) are integrated along two particular streamlines from inlet
to exit. For these two streamlines, Equation (9.16) is verified by comparing the increase
in the z-derivative of the vorticity at the exit of the pipe to the vorticity gradient
computed from the solution at the pipe exit. Moreover, the source-term for the axial

vorticity is shown to be indeed small compared to the source-term for the axial vorticity
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z-derivative as declared by hypothesis.

In Figure 9.8a) two streamlines are shown in front and side views. The axial vor-
ticity derivative dw,/8z computed from the Eulerian/Lagrangian solution is plotted on
the pipe exit cross-section with indication of the location of the end-points of the two
streamlines. Figure 9.8c) represents the values of the right-hand sides of Equation (9.15)
(S..) and of the third component of Equation (9.16) (Sow,/0z) (i-e. the source-terms
for the axial vorticity and the source-terms for the z-derivative of the axial vorticity)
integrated on the two streamlines from the pipe inlet to the pipe exit. The source-terms
for the axial vorticity are indeed small for both streamlines compared to axial vortic-
ity magnitude, therefore justifying the use of Equation (9.8). The magnitude of the

source-terms for the z-derivative of the axial vorticity is larger for both streamlines.

These terms, taken at the exit of the pipe, correspond to the values of vorticity deriva-
tive displayed on the pipe exit cross-section in Figure 9.8b) at the indicated end-point
location of the two streamlines (the inlet values for dw,/dz is 0). Thus, Equation (9.16)
is verified for the particular case of these two streamlines and show that the strain and
rotation fields combination integrated on the right-hand side of the equation is indeed
the mechanism by which the large vorticity gradients are created along the pipe. Fur-
thermore, these vorticity gradients appear in the absence of strong source-terms for the
vorticity. For this test case, the vorticity is essentially convected passively with the

material particles.

9.2.2 Introduction of a pseudo-diffusion term

Examining Figures 9.7a) and 9.7b), it can be seen that the information between two
markers at the inlet is lost because of the lack of grid resolution. In order to transport
information from approximately one marker per cell at the inlet, the grid resolution in
the cross-flow plane would have to be increased by a factor ~ 4 near the pipe exit, see

Figure 9.7a). As the strength of the swirling flow increases, so does the required grid
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Figure 9.8: Case C = 0.3: a) Front and side views of pipe with 2 streamlines, b)
axial vorticity derivative dw./0z on exit cross-section with end-points of streamlines
(inc.=0.5), c) source-term for axial vorticity: S, and source-term for dw./dz: S, /5.
along the 2 streamlines.

137



resolution. However, because the representation of vorticity gradient augmentation is
inviscid, as the grid resolution increases so do the gradients of vorticity as shown in

Figure 9.6.

When the strength of the swirling flow is increased by a factor 2, i.e. C = 0.6, the
vorticity gradients are further intensified to a point where the high vorticity gradient
region covers less than one cell. (This region separates a high vorticity from a low vor-
ticity). This phenomenon is shown in Figure 9.9 where contours in axial vorticity are
drawn for diverse stations along the pipe. The vorticity gradient is intensifying along
the pipe. When using the Eulerian scheme alone, the numerical diffusion spreads the
high gradient of vorticity region over a few cells, whereas when using the Lagrangian
correction, wiggles in the high vorticity gradient region appear because the represen-
tation of this region by markers placed at cell centers (or by state-vectors at the grid
nodes) becomes inadequate near the pipe exit (as seen when superimposing the grid
on the exit-cross-section in Figure 9.9b)). As mentioned before, the insufficient spatial
representation of the flow destabilizes the Eulerian solution through the correction pro-
cedure. For example, the inaccurate velocity corrections lead to erroneous perturbations

of the axial velocity through the solution of the continuity equation.

As shown before, the use of larger size grids does not help to overcome the problem
since the gradient region concentrates. Therefore, the gradients have to be ‘controlled’ so
as to be supported on the fixed size grid. The goal of the Lagrangian correction technique
is still the reduction of the numerical diffusion of the Eulerian solver without resorting
to larger size grids. However, in the present flow cases, because of the vorticity gradient
augmentation phenomenon, the additional control of vorticity gradients is required in

order to get a stable Eulerian/Lagrangian solution.

The present section shows that the introduction of a pseudo-diffusion term in the
Helmholtz equation allows to control the strength of the vorticity gradients in the flow.
If the diffusion level introduced by the Helmholtz pseudo-diffusion is maintained lower

than the numerical diffusion of the Eulerian scheme, the resulting solution will still show
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a substantial improvement over the Eulerian solution alone.

The pseudo-diffusion term is chosen such as to take the same form as the real diffusion

term arising in a viscous fluid, hence the Helmholtz equation is now written as

D3
F‘: = (@- V)T + nVia, (9.17)

where the coefficient v; is the Lagrangian pseudo-diffusion coefficient proportional to
the mesh size h. The ratio of the right-hand side terms is of the order of the pseudo-
Reynolds number Rey and is a measure of the tendency of the vortex lines to be frozen
to the fluid compared to the tendency of the vorticity to diffuse in the flow. Using V
and L to represent the reference velocity and length, then

G-V)§ VI
yvVig v

~ Reyr. (9.18)

The pseudo-diffusion term is added to the tilting/stretching term and integrated along
the marker trajectory using a predictor-corrector scheme. The evaluation of the La-
grangian pseudo-diffusion term in the Helmholtz equation is similar to the evaluation of
the smoothing term in the Lax-Wendroff algorithm of Section 3.2. However, the vector
3 is known at the cell centers instead of the grid nodes. Therefore, the average values &
are first defined at the cell nodes by averaging the values of & at the eight surrounding
cell centers. The Lagrangian pseudo-diffusion term is then evaluated at a cell center
by summing the differences between the eight nodes average values and the cell center
value. The vorticity Laplacian is then interpolated from the cell centers to the marker

location for each Lagrangian time-step.

Definition of vorticity at a wall node

When defining the node average values of &, the wall nodes receive contribution from
only four cell centers. The vorticity value at the wall nodes is determined through the

following relations defining the vorticity gradients at a node by a surface integral over
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Figure 9.10: Estimation of the vorticity at a wall node.

a pseudo-cell based on the cell centers as sketched in Figure 9.10

Vw, V:/ Vw dV = /w,ﬁ‘dS, (9.19)
|4 S

Vo, V = f Vu,dV = / wyAdS, (9.20)
v S

Ve, V = / Vw,dV = / w,AdS, (9.21)
1’4 S

where V' is the volume of the pseudo-cell. Using the nomenclature defined in Section 3.1,
the vorticity gradient at node 1 of Figure 3.1 is defined as the sum from the contributions

from the eight surrounding cells A to H. The contribution of cell A4 is given by

1
Vug, = —— 'L w S, 9.22
! 4I/l Ax,ZmZ) ( )
1
Vo, = — ﬁ w, AdS, 9.23
1 4 Ay,Az,A; v ( )
1
Vw,, = ——ﬁ w,ndS, 9.24
! 41/1 AI'ZZvZJ ( )

and so on for the contributions from cells B to F. The value of &,, at the wall node is

then found from the nearest node in the direction perpendicular to the wall as sketched
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in Figure 9.10 by using the values of @ and V& for this node as

an ™ dn 8z dn 0dydn 9z9n

-

=
Wy =W+

(9.25)

Figure 9.9c) shows the axial vorticity contours for the same cross-sections as Fig-
ure 9.9a) and 9.9b) for the Eulerian/Lagrangian solution with a Lagrangian pseudo-
diffusion term added to the Helmholtz equation. The axial vorticity contours are
smoother showing that the the addition of the pseudo-diffusion terms allows to con-
trol the vorticity gradients. The resulting vorticity field is more accurately represented
on the fixed-size grid and the Eulerian/Lagrangian scheme is stable. As designed, the
Lagrangian pseudo-diffusion term is shown to be very effective at smoothing out the
strong vorticity gradients in the flow without affecting the smooth vorticity regions.

The numerical value of »; used for this test case is 0.05.

The amount of diffusion introduced in the solution is quantified by looking at the
changes in circulation around a closed curve moving with the flow. The circulation
around the closed curve initially placed around the inlet cross-section is shown in Fig-
ure 9.11 as a function of the convection distance along the pipe (measured as a mean
value of all the convective markers positions) for the Eulerian solution and the Eule-
rian/Lagrangian solution with the addition of the Lagrangian pseudo-diffusion term in
the Helmholtz equation. In Figure 9.11, the change in circulation when using an Eule-
rian/Lagrangian scheme and a Lagrangian pseudo-diffusion term is shown to be small

compared to the change observed in the circulation using the basic Eulerian solution.

The convective change in circulation around a closed curve due to the introduction
of a diffusion term in the Helmholtz equation can also be expressed as a contour integral

of the curl of the vorticity as given in Appendix F.
As the strength of the swirling flow increases, the phenomenon of vorticity gradient

augmentation is responsible for the inaccurate representation of the vorticity in the flow

which is the cause for a destabilization of the combined Eulerian/Lagrangian scheme.
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Figure 9.11: Case C = 0.6: Circulation around a closed curve, a) Eulerian solution, b)
Eulerian /Lagrangian with smoothing term in the Helmholtz equation.

The introduction of a pseudo-smoothing term in the Helmholtz equation has been shown
to successfully smooth out the strong vorticity gradients and allows one to obtain a stable
Eulerian/Lagrangian solution. By comparing circulations around a closed convecting
material curve, the Eulerian/Lagrangian solution gives still a substantial improvement
over the Eulerian solution alone. The computation of the pseudo-smoothing term results

in a ~ 5% increase of CPU over the Eulerian/ Lagrangian basic solution.
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Chapter 10

Constant Stagnation Pressure Flow in a 90°

Bend

The incompressible flow in a 90° bend of circular cross-section with constant stagna-
tion pressure inlet conditions is examined. The constant stagnation pressure is obtained
at the inlet through constant pressure and constant velocity conditions. The inlet ve-
locity is set as part of the inlet boundary conditions. The inlet surface is located far
enough from the bend so that the upstream influence of the bend is negligible and the

constant pressure condition is also obtained.

The exact solution for the flow field is at constant stagnation pressure since the
stagnation pressure remains constant along a streamline and each streamline is charac-
terized by the same stagnation pressure. In turn, the vorticity in the domain is zero
everywhere because the flow is irrotational upstream of the inlet cross-section. From
[4], if at any instant in time before ¢ = 0 (time at which particles cross the inlet section)
the flow is irrotational, then the flow remains irrotational for any subsequent instant.

That is if all derivatives of & are zero for any time previous to ¢t = 0, then

D D3 D3
— = ==Y _ 0.1
Dt Dt2 Din 0, (10.1)

and if all derivatives are defined, Taylor’s theorem shows that the quantity & vanishes
for all subsequent instants in time. Alternatively, Hawthorne showed in [26] that the
growth of streamwise vorticity is a function of the stagnation pressure field only, so that

no streamwise vorticity can be created in a constant stagnation pressure field.
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. Because of truncation errors, the Eulerian solution does not exactly satisfy the con-
stant stagnation pressure and zero vorticity conditions. By computing Eulerian solutions
on a coarse and a fine grid, this test case provides for a calibration of local and global
errors in stagnation pressure and vorticity. Also, by using the Eulerian/Lagrangian
scheme, the errors in vorticity and stagnation pressure are shown to be less than for the
Eulerian solution alone. This test case also provides a check on the numerical integra-
tion of the vorticity source-terms (&- V)¥. These must be driven towards zero (starting
from an Eulerian solution with errors in vorticity and stagnation pressure) since the
exact solution for the flow is irrotational. The improvement due to the addition of
the Lagrangian correction is compared to the improvement obtained when using the

Eulerian scheme on a finer grid.

Again, since the flow is symmetrical, the computations are performed only one half
of the pipe. The geometry used for this test case is taken from the Enayet et al. [21] flow
data and will also be used in Chapter 11 for secondary flow calculations. The geometry

and grids are identical to the ones used for the accuracy study of Section 3.9.

The pipe diameter is 0.048 m and the ratio of radius of curvature to pipe diameter
is 2.8. The computational domain extends two diameters upstream of the bend inlet
cross-section and two diameters downstream of the bend exit cross-section. As men-
tioned before, the distance of two diameters upstream is required to satisfy the constant
stagnation pressure condition at the pipe inlet cross-section. The calculations are per-
formed on a coarse grid with 43 stations along the bend total length and 189 nodes
in a cross-section. The fine grid is formed by 85 cross-sections with 713 nodes in a
cross-section. The fine grid is composed of eight times as many cells as the coarse grid.
The two grids are shown in Figure 10.1 in side and frontal views. The cross-sections at
which the results are presented are indicated. Eulerian solutions are computed on both

grids, whereas an Eulerian/Lagrangian solution is computed on the coarse grid only.

The Lagrangian correction uses the upstream streamline integration scheme where a

marker is placed at the center of every cell and the streamlines are integrated backwards
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Figure 10.1: Coarse and fine grids front and side views (189 x 43 nodes and 713 x 85
nodes) with particular cross-sections.
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with approximately two steps per cell until they reach the inlet. The streamlines are
recomputed every 50 iterations of the Eulerian solver. The correction step is applied
once at each Eulerian iteration. An under-relaxation on the vorticity correction is used
according to Equation (6.48) in order to limit the perturbations to the Eulerian solver.

The under-relaxation factor Ry is 0.5%.

Since the Lagrangian correction technique is based on vorticity corrections, the local
errors are first shown in terms of vorticity errors. Contours in the z-component of vor-
ticity are shown in Figure 10.3 for a cross-section located at 45° in the bend. The coarse
grid Eulerian solution and the coarse Eulerian/Lagrangian solution are shown in Fig-
ures 10.3a) and 10.3b). The fine grid Eulerian solution is represented in Figure 10.3c).
Similarly, in Figures 10.4, 10.5 and 10.6, the contours of the z-component of vorticity
are drawn for three cross-sections located at 90° (bend exit cross-section) and at 1 and
2 diameters downstream of the bend exit cross-section (the z-component of vorticity is
streamwise for these stations). The maximum amount of error in the cross-section is
indicated in each case. The vorticity is normalized with respect to the group U;,/R
representing the inlet velocity divided by the pipe radius.

The errors in vorticity are concentrated near the wall of the pipe. By compar-
ing the three solutions, it is clear that the combined Eulerian/Lagrangian scheme is
very effective at reducing the errors in vorticity in the flow field. Indeed, in the Eule-
rian/Lagrangian solution, the error in the z-component of vorticity is reduced to nearly
zero, whereas using the Eulerian scheme on a finer mesh leads to very little reduction
of the error in vorticity. In the coarse grid Eulerian solution, the errors in vorticity are
more diffused in the domain, but the level of error remains approximately the same for

the coarse and the fine grid.

The results are also calibrated in terms of the local error in stagnation pressure

coefficient AC), defined at any node by Equation (3.75).

Figure 10.7 shows contours in AC), on the 45° cross-section for the coarse grid Eule-

147



rian and Eulerian/Lagrangian solutions and the fine grid Eulerian solution. The 90°, 1d
and 2d cross-section results are represented in F igures 10.8, 10.9 and 10.10, respectively.
The maximum error is indicated for each cross-section. The error in stagnation pressure
is the largest at the inside of the bend near the 90° station where the pressure recovery
occurs. By using the Eulerian/Lagrangian scheme, the error in stagnation pressure is
reduced locally when compared to the reference case of the coarse grid Eulerian solution.
The maximum error in stagnation pressure for the Eulerian /Lagrangian solution is even
lower than for the fine grid Eulerian solution. Since the stagnation pressure is not trans-
ported along the streamlines in the Lagrangian scheme, the correction of the stagnation
pressure occurs indirectly through the vorticity correction (Crocco’s equation relates
vorticity and stagnation pressure gradient) as mentioned in Section 4.2. The corrected
velocities alter the flux balance around each cell in the Lax-Wendroff algorithm so that

the pressure is corrected too.

A global indicator of stagnation pressure losses is the L, norm of the stagnation

pressure losses for the domain defined as ¢,, by Equation (3.74).

Even if the maximum local error in stagnation pressure is smaller with the Eule-
rian/Lagrangian scheme than with the fine grid Eulerian solution, the errors are less
diffused with the latter so that an average measure over the nodes like the L, norm
gives a more unfavorable result for the Eulerian/Lagrangian solution. The L, norm
of the stagnation pressure errors decreases by a factor ~ 2.3 when using the Eule-
rian/Lagrangian solution, whereas the Eulerian solution on the finer grid leads to a
reduction factor of ~ 4.0 (which is in accordance with the Lax- Wendroff scheme second-

order accuracy).

In an inviscid flow, by expressing the gradient of pressure in terms of the local
coordinates system (s,n,b) where s,n and b stand for the streamwise, normal and
binormal directions as shown in Figure 10.2, the gradient of pressure along the binormal
direction can be shown to be zero [39]. This also implies that the norm of the velocity

presents no dependence on the binormal direction since the flow is at constant stagnation
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Figure 10.2: Local coordinate system (s,m,b).

pressure for this test case. Also, because the secondary vorticity is zero (as is the case for
the other components of vorticity), the streamlines do not present any torsion, and cross
the grid cross-sections perpendicularly. The contours in velocity norm are represented
in Figures 10.11 and 10.12 for the 45° and 90° stations, respectively. These plots
provide an indication of the vorticity correction near the pipe wall. The exact solution
presents no dependence on the binormal direction (here the direction perpendicular to
the symmetry surface, i.e. the y-direction). The reduction of the spurious deformation
of the contours of velocity norm is larger when using the Eulerian/ Lagrangian scheme

than when using the Eulerian scheme on the fine grid.

The Eulerian/Lagrangian scheme is clearly more efficient than the fine grid Eulerian
solution at reducing the errors in vorticity in the flow. Indeed, while the vorticity
errors are more concentrated when using a finer grid, the level of vorticity remains
approximately the same in the coarse or the fine grid Eulerian solution. Also, it has been
shown that the vorticity correction of the Lagrangian scheme results in a more accurate
solution of the velocity field than the fine grid Eulerian solution. The maximum error
in stagnation pressure in the field is lower when using the Eulerian/Lagrangian scheme
than the fine grid Eulerian scheme. However, since the stagnation pressure errors are
more diffused in the flow with the Eulerian/Lagrangian scheme, the reduction in the L,
norm of the stagnation pressure losses is lower than with the Eulerian solution on the

fine grid (a factor 2.3 compared to a factor 4.0).
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The Eulerian/Lagrangian solution is substantially less expensive than the fine grid
Eulerian solution. The addition of the Lagrangian correction leads to an increase of
~ 75% of the basic coarse Eulerian solution. In comparison the fine grid Eulerian solu-
tion requires 16 times more CPU than the coarse grid Eulerian solution (the Eulerian
solution on the coarse grid requires ~ 2000 iterations to converge to a maximum resid-
ual of ~ 1 x 10-% (the initial flow is interpolated from a coarser grid solution), the
Eulerian/Lagrangian solution requires ~ 390 iterations to converge starting from the

converged Eulerian solution and takes ~ 10.6 seconds /iteration in average).
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Figure 10.3: Contours of z-component of vorticity at 45° station, a) Eulerian solution,
b) Eulerian/Lagrangian solution, ¢) Eulerian solution on fine grid (increment = 0.05).
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Figure 10.4: Contours of streamwise vorticity at 90° station, a) Eulerian solution, b)
Eulerian/Lagrangian solution, c) Eulerian solution on fine grid (increment = 0.05).
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Figure 10.5: Contours of streamwise vorticity at 1d station, a) Eulerian solution, b)
Eulerian/Lagrangian solution, ¢) Eulerian solution on fine grid (increment = 0.05).

O

b) c)
Aw, = 0.601 Aw, = 0.025 Aw, = 0.575

Figure 10.6: Contours of streamwise vorticity at 2d station, a) Eulerian solution, b)
Eulerian/Lagrangian solution, ¢) Eulerian solution on fine grid (increment = 0.05).
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Figure 10.7: Contours for the local error in stagnation pressure coefficient ACp, at 45°
station, a) Eulerian solution, b) Eulerian/Lagrangian solution, c¢) Eulerian solution on
fine grid (increment = 0.005).
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Figure 10.8: Contours for the local error in stagnation pressure coefficient AC,, at 90°

station, a) Eulerian solution, b) Eulerian/Lagrangian solution, ¢) Eulerian solution on
fine grid (increment = 0.005).
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Figure 10.9: Contours for the local error in stagnation pressure coefficient AC,, at 1d

station, a) Eulerian solution, b) Eulerian/Lagrangian solution, ¢) Eulerian solutlon on
fine grid (increment = 0.005).
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Figure 10.10: Contours for the local error in stagnation pressure coefficient AC,, at 2d

station, a) Eulerian solution, b) Eulerian/Lagrangian solution, c) Eulerian solutlon on
fine grid (increment = 0.005).
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Figure 10.11: Contours in velocity norm at 450 station, a) Eulerian solution, b) Eule-
rian/Lagrangian solution, c) Eulerian solution on fine grid (increment = 0.01).
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Figure 10.12: Contours in velocity norm at 90° station, a) Eulerian solution, b) Eule-
rian/Lagrangian solution, c) Eulerian solution on fine grid (increment = 0.01).
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Chapter 11

Secondary Flow in Bent Pipes

The secondary flow phenomenon results from the existence of a vorticity component
in the ‘throughflow’ direction. As the flow moves along a bend, each fluid particle is
subjected to a centrifugal force acting in a direction of a line going through the center of
curvature of the streamline. If the velocity profile is non-uniform, the centrifugal force
acting on faster moving particles will be larger than the one acting on slower moving
particles. This induces a motion of the particles in a cross-flow plane with non-uniform
cross-flow velocities. For example, a fully-developed pipe flow profile presenting higher
velocities at the pipe center and lower velocities near the pipe wall will lead to secondary
flow when taken through a bent pipe. Under the action of the centrifugal forces, the
slow moving fluid is pushed inwards whereas the fast moving fluid moves towards the
bend outer wall. Because of continuity, the fast moving fluid displacement towards the
outer wall forces slow moving fluid to convect along the pipe wall towards the pipe inner
wall. A circular motion constituting the secondary flow phenomenon is then established
in a cross-flow plane. This is illustrated in Figure 11.1 taken from [19]. The effect of the
secondary flow in bent pipes of circular cross-section is then to displace the high velocity
regions towards the outer wall. But if the inlet boundary-layer is thin, the main core flow
will behave approximately as a free-vortex flow through the bend and the displacement
of particles in cross-flow planes will be small compared to the displacement along the

streamwise direction.

As a result of the Helmholtz equation, the secondary flow in bent pipes can be

explained in terms of the turning, stretching and diffusion of the vorticity attached to a
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Figure 11.1: Secondary flow in a bent pipe due to non-uniform streamwise velocity.

given fluid particle. For the flow in a bent pipe, the vorticity may be initially present in
the inlet velocity profile. In the case where the flow is fully developed at the inlet of a
pipe of circular cross-section, the inlet vortex lines form concentric rings. If the diffusion
term is ignored, the secondary vorticity is due only to the turning and stretching of the
legs of the inlet vortex lines which are parallel to the pipe symmetry-plane, as two
particles on the inner and outer radii convect through the bend with different speeds.
This is illustrated in Figure 11.2 where a few vortex lines are drawn from an Eulerian
solution of a flow in a 90° bend. At the inlet of the computational domain, the flow is
fully developed and the vortex lines present no throughflow component. Near the bend
inlet, the few vortex lines drawn near the wall surface indicate the presence of secondary
vorticity due to tilting and stretching. The phenomenon intensifies as the flow moves

down the bend as shown by the vortex lines drawn near the bend exit.

The creation of the secondary flow in the bend has been described so far as an
‘inviscid’ flow phenomenon. The additional effect of the developing boundary-layers or of
the wall log region in the case of a fully developed flow is to counteract the development
of the inviscid secondary flow as explained in [21]. The boundary-layer on the inner wall
of the pipe is subjected to a favorable pressure gradient, so that it grows slowly. On the
outer wall the adverse pressure gradient causes the boundary-layer to thicken. The result

of taking the boundary-layers into account is then to displace the high velocity regions
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Subsequent vortex rings

Figure 11.2: Secondary flow generation by tilting and stretching of vortex lines in a 90°
bend.
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more towards the inner wall, an effect inverse to the prediction of the inviscid secondary
flow theory. If the bend exit is under constant pressure conditions (for example due to
a straight section or an exit at atmospheric pressure) the streamwise pressure gradients
have to be reversed near the exit in order to readjust to the downstream pressure. The

evolution of the boundary-layer is therefore complex to predict.

The secondary flow phenomenon is a feature common to many flow problems and
has been the object of extensive studies. Both approximate solutions and numerical
computations have been tested against experiments. Berger et al. {10] review article
provides an extensive list of references for the flow in curved pipes. Hawthorne [28]
studied the applicability of secondary flow analyses for the solution of internal flow
cases. Ackeret [2] also described peculiarities linked to the internal flow behavior.

A well-known approximate solution for the secondary vorticity in a bend or a cascade
of airfoils is the Squire and Winter relation [67], which links the secondary vorticity
generation to the bend angle and the inlet vorticity. Rowe [59] compared experiments
and computations based on the Squire and Winter formulation for a 180° bend and
found reasonable agreement up to an angle of about 75°. Detra [19] also derived an
approximate solution procedure based on small perturbations of the throughflow in
good agreement with experiments in pipes of 21° and 42° bend angle. However, the
pipe radius has to be small compared to the radius of curvature for this approximate

solution to be valid.

More recently, Lakshminarayana [39] derived generalized expressions for the sec-
ondary vorticity using intrinsic coordinates. This work has been extended by Hawthorne

[29] for stratified fluids in rotating systems.

An analytical formulation based on a streamlike function formulation of the inviscid
flow in a curved duct was proposed by Abdallah [1] and tested on a 90° duct of rectan-
gular cross-section. The turning of the velocity contours is predicted in good agreement

with experiments. Briley [12] investigated three-dimensional viscous flows with large
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secondary vorticity by deriving a system of approximating equations for flows where a
primary direction is present, but in which the transverse velocity components can be
large. Also, an extensive series of laminar and turbulent Navier-Stokes solutions in bent
pipes of circular cross-section and square ducts have been compared with experiments.

A few of these are [35], [34], [33], [74], [79], [32], [52).

11.1 Motivation

The present work uses the Euler equations for the prediction of secondary flows in bent
pipes. The motivation for the use of an inviscid formulation as reported by Hawthorne
in [28] is based on the fact that large regions of the flow, although non-uniform, may
be assumed frictionless since the influence of the walls extends only gradually inwards
as the flow passes around the bend. Also, the presence of viscosity is not required
for the generation of secondary vorticity even if the initial presence of vorticity at the
inlet of the pipe is due to a viscous effect. The fundamental behavior of the flow can
be predicted using the Euler equations since the development of the secondary flow is
mainly the result of an inviscid process of vortex stretching and tilting. - This applies for
high Reynolds number flows since the ratio of time scales between the transverse viscous
momentum diffusion and the convection time scale is proportional to the inverse of the
Reynolds number for laminar flows. In turbulent flows, the ratio is roughly constant

but still small.

Also, the Euler equations are not restricted by the small shear assumption used in
the approximate solutions of [67] and [19] where the distortion of the vorticity by the
secondary vorticity is neglected as a second-order effect. This is particularly important

here, where high turning angles and high Reynolds numbers are of interest.

An underlying motivation is the study of the numerical diffusion effects on the so-

lution. By comparing Eulerian solutions on coarse and fine grids, it is shown that the
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numerical diffusion inherent to the Eulerian solver has an important effect on the so-
lution both in terms of strength and location of the secondary flow. The fact that the
general effect of the numerical diffusion is shown to be qualitatively similar to the real
viscous effects is a misleading result since the solution remains very sensitive to the
amount of numerical diffusion. Therefore, very fine grids are required for secondary
flow computations in order to obtain a solution in which the numerical diffusion effect
is small. By computing the circulation around a closed curve moving with the fluid, it
is shown that even the fine grid Eulerian solution still suffers from numerical diffusion,
indicating the limitation of standard Eulerian solvers for the computation of secondary
flows. The motivation for the introduction of the Lagrangian correction technique is to
find an alternative to expensive large size grids Eulerian calculations of secondary flow
phenomena. With the addition of the Lagrangian correction technique, the amount of
numerical diffusion observed in the Eulerian solution is shown to be reduced for a given
grid size when compared to the standard Eulerian solution, or equivalently the grid

requirements are reduced to converge to a solution where the effects of the numerical

diffusion are small.

The reduction of the spurious numerical diffusion to an unimportant level allows
one to address the question of how much the secondary flow is influenced by the real
fluid viscosity by comparing the truly inviscid numerical solution with the existing

experimental data.

Earlier, Navier-Stokes solutions have been reported to suffer from numerical diffu-
sion more than from the turbulence modeling uncertainties [35]. This was due to the
coarse discretisation imposed by large memory size requirements. Today, the turbulence
modeling together with near wall boundary conditions is likely to be the predominant
uncertainty factor in the viscous solution of the secondary flow in bends as seen in [32].
In comparison, Eulerian/Lagrangian computations offer a computationally cheaper ap-
proach and, as seen in the result sections, still provide with a description of the basic

flow behavior. However, the limitations of the present method are listed below.
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11.2 Limitations

As mentioned earlier, the viscosity effects tend to reduce the development of the sec-
ondary flow. Therefore, inviscid numerical solutions tend to overpredict the secondary
flow generation, a result consistent with the findings of this study. The effect of the
growing boundary-layers is to narrow the channel and change the pressure distribution.
The shear stress for a laminar boundary-layer subjected to a streamline curvature can
be written as a function of §/R. where § is the boundary-layer thickness and R, is the
radius of curvature of the pipe. For a turbulent boundary-layer, however, the effect
of the streamline curvature on the boundary-layer thickness are an order of magnitude
larger [11]. In the turbulent flow case, the curvature of the bend acts as a flow destabi-
lizer near the outer wall whereas the flow is stabilized near the pipe inner wall [2]. At
the same time, the fluid is transported from inner to outer wall by the secondary flow

motion.

Another limitation for the use of the Euler equations is the requirement that a
slip velocity has to be defined at the wall for the inlet velocity profile (if not reverse
flow would immediately occur on the outside of the bend under the influence of the
adverse pressure gradient). However, the problem is not singular to the Euler equations
solutions, since the requirement of a ‘cut-off’ velocity at the wall also arises in the
approximate solutions methods because the small shear assumption becomes invalid
near the wall. Squire and Winter [67] used a ‘cut-off” velocity of 45% of the mean velocity
and Detra [19] tried both 65% and 80% cut-off velocities on the inlet velocity profile.
As reported in [28], the limitation is important since the secondary vorticity depends
on the incoming velocity profile vorticity. Hawthorne [27] found a cut-off velocity by
canceling the overpredicting effect of the secondary vorticity of Squire and Winter by
a large negative vorticity at the wall. However, this analysis is limited to small bend

angles.

The present approach to the slip velocity definition for a turbulent inlet mean velocity

profile is to neglect the laminar sublayer. The slip velocity is then chosen as the velocity
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just outside the laminar sublayer as mentioned in Chapter 8 where this approach has
been used for the preservation of a turbulent inlet velocity profile in a pipe. The model
is valid for turbulent boundary-layers where the thickness of the boundary-layer is much
larger than the laminar sublayer. The present choice of y* = 30 as the upper limit of
the laminar sublayer is arbitrary. However, this value is consistently used to determine
the slip velocity for the two flow cases computed in this Section. Still, the best way
to determine this slip velocity would be to calibrate the y* value by fitting numerical
computations to measurements. This was not attempted here, since a wider study would
be required in order to determine the best value of y* valid for a range of flow cases.
Instead, as mentioned in Section 11.1, the present chapter deals with the reduction of

the spurious numerical diffusion phenomenon.

Denton [18] uses a similar concept in his inviscid calculations of turbomachinery in
order to introduce viscous effects in the momentum equation by the use of a distributed
body force. The wall shear stress is obtained by neglecting the displacement thickness
of the laminar sublayer, that is the surface streamline lies at the edge of the laminar
sublayer. A loss function is derived as a power law distribution from the wall into the
field. A value of y*+ of 10 for the edge of the laminar sublayer is recommended by [18]
only if there are enough nodes to describe accurately the boundary-layer. In practice,

a value between 10 and 40 produced the best fit with measurements.

A first attempt to counteract the overprediction of the secondary-flow is performed
in this study by introducing a simple ‘wall correction’ where the velocity is adjusted
at every node on the wall, using the universal log-law distribution between the nodes
adjacent to the wall and the nodes on the wall. This method is described in more detail

in Section 11.4.3.

The comparison of numerical solutions with experiments is, however, suffering from
a lack of experimental data on the cross-flow itself for the cases treated here. Refraction
of the laser beam at the water-plexiglass interface prevented the measurements of cross-

section velocity components in the pipe of circular cross-section of the Enayet data
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set [21]. The data available is essentially composed of streamwise velocity contours for
diverse cross-sections along the bend supplemented by pressure measurements along the
wall for diverse angles around the bend. The absence of experimental measurements of
the cross-flow (necessary to quantify directly the strength and position of the secondary
flow) makes the comparison with the calculations incomplete. However, calculations
are helpful since they indicate a correlation between streamwise velocity contours and

position and strength of the cross-flow regions.

11.3 Outline

The first pipe geometry is taken from the Enayet et al. [21] data set while the second
corresponds to a bend tested at the Gas Turbine Laboratory of MIT.

First, coarse and fine grid Euler solutions of the flow are compared to indicate
the effect of numerical diffusion on the strength and position of the secondary flow.
The Lagrangian correction technique is then introduced in order to reduce the level of
numerical diffusion, allowing the identification of the real viscous effects by comparison
with experiments. The numerical diffusion reduction is demonstrated by computing the
circulation around bend cross-sections along the pipe and by tracing the circulation on
a closed curve moving with the fluid. Then, results are shown using the wall correction
method which attempts to counteract the overprediction of the secondary flow. Pressure
measurements along the bend are also compared with experiments for the Enayet et al.

geometry.
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11.4 Enayet 90° bend case

The secondary flow development for an incompressible flow (water) through a 90° bend
of constant circular cross-section is investigated. The results are compared to experimen-
tal data taken from the Enayet et al. [21] data set providing Laser-Doppler Velocimeter
measurements of throughflow or ‘streamwise’ velocities at different cross-stations along

the bend and pressure measurements along the wall for diverse angles around the bend.

The geometry is identical to the one used for the constant stagnation pressure flow
in Chapter 10. The diameter of the pipe is 0.048 m. and the ratio of radius of curvature
to pipe diameter is 2.8. The computations were performed on a coarse and a fine grid
with 320 X 36 nodes and 1223 x 71 nodes, respectively. The grids front and side views
are represented on Figure 11.3. The grid cross-sections are spaced evenly in the stream-
wise direction along the bend centerline. The test geometry extends three diameters
downstream of the bend exit cross-section. In order to accelerate the calculations, the
computational grid reaches only two diameters downstream. It has been verified by
numerical experiments that the computational results are not affected by applying the
exit boundary condition at such a reduced distance from the exit of the bend. The grid
extends 0.58 diameters upstream of the bend inlet cross-section where the inlet velocity
is known from measurements. Eulerian solutions are performed on both grids, whereas

the Eulerian/Lagrangian solution is computed on the coarse grid only.

A particularity of this secondary flow problem is that the vorticity (either inlet
boundary-layer vorticity or secondary vorticity) presents concentrated regions but is
also present in a more diffused form in a large portion of the flowfield. This implies
that the Lagrangian correction technique has to operate on a large extent of the flow
therefore requiring a large amount of markers. The option to place a marker at the
center of each cell has been chosen here for simplicity. The upstream integration of
the streamlines is found to be more successful than the downstream integration since it
implies an even distribution of the markers in the flow. The correction step is applied

only once at each Eulerian iteration. Both an under-relaxation of the correction (Ry =
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Figure 11.3: Coarse and fine grids front and side views (320 x 36 nodes and 1223 x 71
nodes) with particular cross-sections.
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0.1%) and a multiplication of the corrections by a factor 1 /4 are used in order to limit
the perturbations to the Eulerian solution. The streamlines are recomputed each 50
iterations of the Eulerian solver. In order to prevent the formation of strong gradients

in vorticity, a Lagrangian pseudo-diffusion coefficient of 2% is used.

The Enayet data set provides streamwise velocity measurements for a turbulent flow
case at a Reynolds number of 43000 and a flow averaged velocity @ of 0.92 m/s. The
fluid kinematic viscosity is 0.804 x 10~ m?/s. The stations at which the experimental
data are available are located at 30°, 60° and 75° along the bend and at 1 diameter

downstream of the bend exit section as indicated in Figure 11.3.

11.4.1 Inlet velocity profile definition

The measured inlet velocities on horizontal and vertical traverses at a distance of 0.58
diameter upstream of the bend inlet section are splined in the circumferential and radial
directions to give an inlet boundary condition for the calculatjon. The slight asymmetry
in the inlet velocity measurements has been averaged out for this calculation. The inlet
velocity profile is not a fully developed profile due to the proximity of the bend but the
assumption of a fully developed turbulent flow is used here for the determination of the
slip velocity at the wall. The procedure is identical to the one described in Chapter 8.

The coefficient of friction, shear stress and friction velocity take the values
A =0.022, 7, =0.00233, u,=0.0482. (11.1)

Using a value of y* = 30 or u* = 14 at the edge of the laminar sublayer, the slip

velocity u,pp is
waip = Ut Uy = 0.675, or —=2 = 0.730. (11.2)
u

The distance from the wall at which the last inlet velocity measurement is taken is
equal to 10% of the pipe radius. Since the first grid point out from from the wall is

located in between the last experimental value and the wall, its velocity has to be fitted
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Figure 11.4: Inlet velocity profile at grid nodes.

on the velocity profile. The velocity profile is represented at the grid nodes location in

Figure 11.4.

In order to be able to compare the Eulerian solution on a coarse and on a fine grid,
both calculations must have the same inlet boundary condition. When discretizing
an analytical velocity profile onto a coarse grid, the inlet vorticity is lower than the
vorticity obtained on a fine grid. This problem is illustrated in Figure 11.5 for the case
of an inlet velocity profile of boundary-layer type. To ensure that the vorticity values
between grid nodes is identical between the two cases, the velocity profile is modified
when using the fine grid according to the arrows in Figure 11.5. The inlet vorticity
value is particularly important here since it is used as a component of the state-vector
in the Eulerian/Lagrangian solution and also as a measure of the numerical diffusion of
the solution when comparing Eulerian or Eulerian/Lagrangian results on a coarse grid

to an Eulerian result on a fine grid.
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Figure 11.5: Velocity profile defined on coarse and fine grids and adjustment of the

velocity profile for the fine grid case.
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11.4.2 Enayet case 90° bend: Eulerian and Eulerian/Lagrangian re-

sults

This section presents the secondary flow solution for the Eulerian solution computed on
the coarse grid, the Eulerian/Lagrangian solution on the coarse grid and an Eulerian

solution on the fine grid. The three solutions are compared with experiments.

The streamwise velocity contours and the cross-flow velocity vectors are shown for
the four stations along the bend on Figures 11.6, 11.7, 11.8 for the Eulerian solution
on the coarse grid, the Eulerian/Lagrangian solution and the Eulerian solution on the
fine grid, respectively. The experimental streamwise velocity contours taken from [21]

are represented on Figure 11.9.

The cross-flow velocity vectors indicate a weak secondary flow region is present
along the pipe wall at the 30° station. On further stations, this region intensifies, moves
towards the inside of the bend, and then moves along the pipe symmetry surface as
the vortical region is entrained due to the the proximity of the wall and the symmetry

surface.

Generally, the Eulerian solution on the fine grid and the Eulerian/Lagrangian solu-
tion on the coarse grid lead to a stronger secondary flow than the Eulerian solution on
the coarse grid. The presence of the pipe wall and of the counter-rotating vortex entrains
the vorticity around the pipe wall and then along the symmetry surface. Because of the
difference in the secondary flow intensity, the entrainment speed and the location of the
vortical regions is also different in the three cases. Therefore, the numerical diffusion
affects both the strength and the location of the secondary flow regions. Using the Eule-
rian solution on the coarse or the fine grid results in very different vortical flow location
at the 1d station as can be seen on Figure 11.6 and 11.8. With the Eulerian solution
on the coarse grid, the secondary flow region is weaker due to numerical diffusion and
the vortical region moves more slowly along the wall and the symmetry plane. When

using the Eulerian/Lagrangian solution on the coarse grid, the vortical regions move
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faster than with the Eulerian solution alone and are closer to the Eulerian solution on
the fine grid predictions showing that the combined scheme is successfully at reducing

diffusion errors.

Not only is the strength and location of the vorticity field affected by the numerical
diffusion for the Eulerian solution on the coarse grid, but the structure of the vortical
field is also affected. With the Eulerian solution on the fine grid, the main secondary
vortex present on the 1d station is accompanied by two smaller counter-rotating vortices
located near the inside of the bend. With the Eulerian solution on the coarse grid, the
two small vortices are smeared out due to numerical diffusion. With the Lagrangian
correction, the two small vortices are recognizable at the 1d station indicating that the
structure of the secondary flow is closer to the one predicted by the fine grid Eulerian

solution.

For each of the three solutions, the low streamwise velocity regions are associated
with the strong cross-flow regions so that the location of the cross-flow in the experiments
can be estimated by looking at the experimental velocity contours on Figure 11.9. For
both the Eulerian/Lagrangian solution on the coarse grid and the Eulerian solution
on the fine grid, the predicted speed of entrainment of the cross-flow seems to be too
large indicating that the neglected viscous effects near the pipe wall are important. The
Eulerian/Lagrangian solution shows a good agreement with the Eulerian solution on
the fine grid. In particular, Figure 11.7 shows how the gradients in axial and cross-flow
velocities near the pipe wall and the symmetry plane are better represented when using

the Eulerian/Lagrangian solution.

Nevertheless, in the Eulerian solution on the coarse grid, the location of the cross-
flow is in better agreement with the experiments because the numerical diffusion plays
a role in decreasing the §trength of the cross-flow and hence its entrainment speed. The
numerical diffusion helps the solution when comparing the solution with experiments in
terms of cross-flow strength and location. However, this is a misleading result since the

numerical diffusion and the real viscous diffusion are two distinct phenomena. Indeed the
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Eulerian solution shows strongly diffused streamwise velocity contours, a result which
does not agree with the experimental streamwise velocity. Therefore the numerical

diffusion of the flow is a spurious computational effect which has to be minimized.

Figures 11.10, 11.11 and 11.12 show the streamwise vorticity contours on the four
stations for the Eulerian solution on the coarse grid, the Eulerian/Lagrangian solution
and the Eulerian solution on the fine grid, respectively. The effect of the numerical
smoothing is clearly visible in Figure 11.10 (Eulerian solution on the coarse grid) by
the curving of the streamwise vorticity contours near the wall of the pipe. This effect
is reduced for the solution on the fine grid in Figure 11.12. The use of the combined
Eulerian/Lagrangian scheme also results in the correction of the diffusion effect near

the pipe wall as seen in Figure 11.11.

Nevertheless, the Eulerian/Lagrangian solution on the coarse grid still suffers from
lack of grid resolution when compared to the Eulerian solution on the fine grid. The
effectiveness of the Eulerian/Lagrangian technique is limited because the flow features
are too small to be accurately captured on the coarse grid. If the Eulerian solution on
the fine mesh is taken as the representation of the inviscid non-diffused solution one
can see that the secondary vorticity gradients to be captured are very high and that
the effectiveness of a solution on a grid twice as coarse is limited by a grid resolution

issue. This is the case when the formed secondary vorticity zone moves along the pipe

symmetry line.

Figure 11.13 shows the streamlines emerging from the inlet boundary-layer near
the wall and wrapping around the vortex for the Eulerian solution on the coarse grid
(a), the Eulerian/Lagrangian solution (b) and the Eulerian solution on the fine grid
(c). In the Eulerian solution on the coarse grid, because of the numerical diffusion, the
vortex is formed further downstream compared to the two other solutions and the rate
of rotation around the vortex is lower. The Eulerian/ Lagrangian solution predicts the
vortex formation even earlier than the Eulerian solution on the fine grid. This is because

in the first part of the pipe, the Lagrangian correction scheme is more effective than the
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fine grid Eulerian solution in preventing numerical diffusion. This is not true, however,
in the second part of the pipe where the vorticity is very concentrated and where the
Lagrangian correction effectiveness is limited by the grid resolution issue mentioned

earlier.

Figure 11.14 compares the pressure contours for the three solutions on the half-
pipe symmetry surface. The negative streamwise pressure gradient on the inner wall is
followed by a pressure recovery. The trace of the secondary vortex on the symmetry
surface is clearly visible in the fine grid Eulerian solution. Up to 2 /3 of the pipe length,
the Eulerian/Lagrangian solution shows a good agreement with the fine grid Eulerian

solution.

Figure 11.15 shows the circulation around pipe cross-sections as a function of their
axial distance downstream s (measured on the pipe axis and normalized by the pipe
radius R) for the Eulerian solution on the coarse grid (a), the Eulerian/Lagrangian
solution (b), and the Eulerian solution on the fine grid (¢c). The condition of constant
circulation around pipe cross-sections does not apply since the contours defined around
pipe cross-sections do not correspond to the convection of a material curve initially
placed around the inlet cross-section. However, this allows for an integral value com-
parison between coarse and fine grid calculations. The circulation (normalized by the
mass-flow averaged velocity 7 and the pipe radius) increases from the inlet until approx-
imately the 70° station due to the creation of the secondary flow. With the solution
on the coarse grid, the circulation increases more slowly due to the strong presence of
numerical diffusion damping the strength of the secondary flow. The circulation com-
puted with the Eulerian/Lagrangian scheme, however, agrees better with the fine grid
Eulerian solution. The departure between the Eulerian/Lagrangian solution and the
Eulerian solution on the fine grid increases after the 60° station, approximately. This is
an indication of the numerical diffusion occurring on the finer mesh. The upstream in-
fluence of the bend is shown by the increase in circulation for the straight pipe segment

placed before the bend.
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An interesting circulation contour to assess the numerical diffusion of the secondary
flow is a material curve surrounding the exit cross-section and convecting ‘upstream’
until approximately the 90° cross-section location. The value of the circulation should
remain constant while the material curve is convecting. Again, the circulations for the
three types of calculations are plotted in Figure 11.16. The symbol s now stands for
the average convection distance from the exit cross-section. The numerical diffusion
is seen as an increase of the circulation when the material curve convects ‘upstream’.
Also because of the numerical diffusion the Eulerian solutions start from lower values of
circulation and the two circulations increase as the material curves convect upstream.
In comparison, the Eulerian/Lagrangian solution shows little change in the circulation.
Still the curve for the Eulerian solution on the fine grid shows a substantial amount
of loss in circulation. This integral value plot indicates that very fine grid Eulerian
calculations are indeed required for these particular vortical flows in order to get a truly

non-diffused solution.

The convergence towards a solution where the numerical diffusion is small results
in an increase of the entrainement speed of the secondary vortex. The predicted speed
of the vortical regions for the Eulerian/ Lagrangian solution and the Eulerian solution
on the fine grid are too large when comparing the computed results to the streamwise
velocity measurements. The difference is accounted for by the effects of the real fluid
viscosity effects. An attempt to take these effects into account is described in the next

section.
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Figure 11.6: Streamwise velocity contours and cross-flow velocity vectors for four sta-
tions along the bend using Eulerian scheme on coarse grid.
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Figure 11.7: Streamwise velocity contours and cross-flow velocity vectors for four sta-

tions along the bend using Eulerian/Lagrangian scheme on coarse grid.
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Figure 11.8: Streamwise velocity contours and cross-flow velocity vectors for four sta-
tions along the bend using Eulerian scheme on fine grid.
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Figure 11.9: Experimental streamwise velocity contours for four stations along the bend.
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Figure 11.10: Streamwise vorticity contours (increment = 1.0) for four stations along
the bend using Eulerian scheme on coarse grid.
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Figure 11.11: Streamwise vorticity contours (increment = 1.0) for four stations along
the bend using Eulerian/Lagrangian scheme on coarse grid.
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Figure 11.12: Streamwise vorticity contours (increment = 1.0) for four stations along
the bend using Eulerian scheme on fine grid.

181



Figure 11.13: Streamlines emerging from the near wall region at the inlet of the pipe

and forming the secondary flow: a) Eulerian solution, b) Eulerian/Lagrangian solution,
c) Eulerian solution on fine grid.

Figure 11.14: Pressure contours on half-pipe symmetry surface (increment = 0.02): a)
Eulerian solution, b) Eulerian/Lagrangian solution, c¢) Eulerian solution on fine grid.
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Figure 11.15: Circulation around pipe cross-sections, a) Eulerian solution, b) Eule-
rian/Lagrangian solution, c) Eulerian solution on fine grid.
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Figure 11.16: Circulation around a closed convecting curve: a) Eulerian solution, b)
Eulerian/Lagrangian solution, ¢) Eulerian solution on fine grid.
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11.4.3 Law of the wall correction

As mentioned in the previous section, the streamwise velocity measurements are in-
dicative that the inviscid solution of the flow predicts a speed of entrainment of the
secondary flow which is too large. While the Eulerian solution predicts the fundamental
flow features, the effect of the fluid viscosity is to decrease substantially the strength of
the secondary flow and therefore its entrainment speed. The effects of the fluid viscosity
were briefly described in Chapter 11. This section presents an attempt at accounting

the shear effects near the wall of the pipe as part of the flow solution.

In order to account for the viscous phenomenon occurring at the wall a simple ‘law
of the wall’ is imposed on each wall node. The log-layer region of the boundary-layer
is in equilibrium, i.e. it does not depend on the pressure gradient imposed upon it.
Under the assumption that the first grid point out from the wall is embedded in the
log-layer, the wall velocity depends only of the velocity value at the first neighboring
node since the log-layer is described by a universal distribution law. The correction at
a wall node consists then in scaling the velocity by using the same log-law relation than
for the inlet velocity profile described in Chapter 8. For each wall node, the magnitude
of the velocity at the first grid point out from the wall is used to determine the value
of the friction velocity u* by implicitly solving the universal velocity distribution law
given in Equation (8.2). Each component of the slip velocity at the wall is then scaled
so that the resulting velocity magnitude is equal to the velocity magnitude at the end
of the laminar sublayer at a ut value of 14 (this value is identical to the one used for

the inlet velocity profile definition).

Figure 11.17 shows the streamwise velocity contours and the cross-flow velocity vec-
tors on the four stations along the pipe for the FEulerian/Lagrangian solution on the
coarse grid with the addition of the simple wall velocity correction. When using the
Eulerian/Lagrangian scheme, the markers in the cells near the pipe walls are omitted

since the wall velocity correction procedure already determines a vorticity value in the

cell.
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The streamwise velocity contours are now in better agreement with the experimental
values drawn in Figure 11.9. The addition of the wall correction leads to a reduction
of cross-flow velocities near the pipe wall and symmetry surface. This means that the
mechanism of near wall diffusion is indeed a factor to take into account when simulating
the flow field. The agreement is particularly good at the 75° station. After this station,
the main vortex departs from the near wall region and travels along the symmetry
surface. At the 1d station, the vortex seems to be located higher than in the experiments

showing the absence of numerical diffusion modeling in the interior of the flow field.

In general, the agreement is not as good when the viscous effects are not taken
into account as shown in the previous section. However, the simple ‘law of the wall
correction’ suffers from the absence of viscous diffusion out from the wall regions. Also,
the assessment of the quality of the solutions proves to be difficult since the present

experiments do not provide any direct information on the cross-flow itself.
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The Enayet data set also provides pressure measurements along the wall of the pipe
for 5 angles around the bend from the bend inside at 0° to the bend outside at 180°
and for 6 stations along the bend located at 15°, 30°, 60°,75° and at 1 and 2 diameters

downstream of the bend exit cross-section.

Figures 11.18 shows the computed pressure along the wall for angles around the
bend at 0%, 45°, 90°,135° and 180° for the Eulerian solution on the coarse grid (a) and
the Eulerian/Lagrangian solution (b). The pressure is non-dimensionalized by the use
of a reference pressure Pref (computed as the average pressure on the inlet cross-section)
and a dynamic head based on the flow averaged velocity T. The abscissa represents the
curvilinear coordinate along the bend measured on the pipe axis. The measurements are
indicated by different symbols for each angle around the bend. The measurements show
a pressure loss of approximately 0.3p%2 from inlet to exit. Since the Eulerian solver does
not take into account any physical loss mechanism, the pressure is entirely recovered
at a distance of 2 diameters downstream of the bend exit. The agreement between
measurements and calculations is only qualitative. Both calculations overpredict the
pressure for the 0°,45° and 90° angles. The agreement is better at 135° but on the
bend inside (at 180°) the pressure recovery is much larger than in the experiments.
In the experiments, the pressure recovery region on the bend inside corresponds to an

increase in the boundary-layer thickness neglected in the Eulerian calculations.

Figure 11.19 shows the computed pressure along the wall when the wall velocity
correction is used in the Eulerian/Lagrangian solution. The loss mechanjsm at the
wall has generally little effect on the pressure distribution. While the agreement has
improved from a solution without wall correction, the coincidence with experiments

remains only qualitative.
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Figure 11.18: Wall static pressure variation at four angles around the bend: a) Eulerian
solution, b) Eulerian/Lagrangian solution (symbols indicate experimental values).
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Figure 11.19: Wall static pressure variation at four angles around the bend: Eule-

rian/Lagrangian solution with wall velocity correction (symbols indicate experimental
values).

190



11.5 GTL 90° bend case

The second test geometry has been tested at the Gas Turbine Laboratory of MIT [6].
Streamwise velocity measurements are provided at a station located at 1.61 diameters

downstream of the bend exit cross-section.

The diameter of the pipe is 0.1023 m. and the ratio of radius of curvature to pipe
diameter is 1.61. The computations were performed on a coarse and a fine grid with
320 x 51 nodes and 1223 x 101 nodes, respectively. The grids front and side views are
represented on Figure 11.20. The grid cross-sections are spaced evenly in the streamwise
direction along the bend centerline. The test geometry extends 1.61 diameters upstream
and downstream of the bend exit cross-section. The upstream distance is required for
the influence of the bend to be negligible at the inlet cross-section since the inlet velocity

profile is specified as a fully developed flow.

The flow Reynolds number is 3.32 X 10° and the flow averaged velocity is 2.61 m/s.
Using the procedure described in Chapter 8, the coefficient of friction, wall shear stress

and friction velocity take the values
A =0.0142, 7, =0.0121, wu,=0.1101. (11.3)

Using a value of y* = 30 or u™ = 14 at the edge of the laminar sublayer, the slip

velocity ugip is

Uiy = ut U = 1541, or =P = 0.589. (11.4)

u

The upstream integration of the streamlines is used in the Eulerian/Lagrangian
technique. The correction step is applied only once at each Eulerian iteration. Both an
under-relaxation of the correction (Rs = 0.1%) and a multiplication of the corrections
by a factor 1/4 are used in order to limit the perturbations to the Eulerian solution.
The streamlines are recomputed every 50 iterations of the Eulerian solver. In order to

prevent the formation of strong gradients in vorticity, a Lagrangian pseudo-diffusion
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Figure 11.20: Coarse and fine grids front and side views (320 x 51 nodes and 1223 x 101
nodes) with measurement cross-section.
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coefficient of 5% is used.

11.5.1 GTL case 90° bend: Eulerian and Eulerian/Lagrangian results

The streamwise velocity contours are shown for the station located at 1.61 diameter
downstream of the bend exit in Figure 11.21 for the Eulerian solution on the coarse grid,
the Eulerian/Lagrangian solution and the Eulerian solution on the fine grid, respectively.

The experimental streamwise velocity contours are represented on Figure 11.21 d).

The three numerical solutions again predict an entrainment speed of the secondary
fiow which is too large. This is especially true of the fine grid Eulerian solution and
the Eulerian/Lagrangian solution. The latter is overpredicting the secondary flow en-
trainment by the largest amount indicating that this solution is the one with the least

numerical diffusion.
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Figure 11.21: Contours of axial velocity at station located at 1.61 diameters downstream
of bend exit, a) Eulerian solution, b) Eulerian/Lagrangian solution, ¢} Eulerian solution
on fine grid, d) experiment (increment = 0.05).
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11.6 Conclusions for the secondary flow in bends

The use of the Euler equations for the solution of the secondary flow in bent pipes has
been motivated by the fact that viscous effects should appear in only limited regions
of the flow. Indeed, the Euler solution of the problem has been shown to predict the
fundamental features of the flow for the two bend cases treated here. However, the
solution is largely dependent on the amount of numerical diffusion, even with the fine
grid solution. By using the Lagrangian correction technique, the numerical diffusion on
the coarse grid was reduced to a level below the one observed on the fine grid. Based on
this ‘true inviscid’ solution, the assessment of the fluid viscosity effects can be assessed
by comparing with experiments. One of the limitations of the method is the definition

of a slip velocity at the wall.

Consistently with the findings of {19], [67], and [28], the inviscid solution of the flow
has been shown to overpredict the development of the secondary flow. A law of the wall
correction has been implemented to take the near wall viscous effects into account. The
resulting streamwise velocity contours and cross-flow position compared better with the
measurements. However, the pressure distribution along the wall was only in qualitative
agreement with measurements. The concordance with the experiments also deteriorated
when the secondary flow moved away from the wall since no viscous effects are taken into
account apart from the wall regions. The law of the wall correction is also dependent
on the chosen value of y+ at the edge of the laminar sublayer. Clearly, this area of
research requires more study. For example, combining an expression like the power law
of Denton to a calibration of the value of y* over several experiments would yield more

promising results.
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Chapter 12

Weston Wing Case

The external flow over a three-dimensional wing tested by Weston (78] at the Langley
Research Center is the object of this section. The wing geometry is characterized by a
rectangular untwisted planform, a NACA0012 cross-section, a semi-span to chord ratio

b/c of 3 and a body of revolution tip.

The Euler equations have been previously used by many authors to describe the flow
around wings (45, 55, 36, 50, 51, 30, 9, 77]. These equations provide realistic solutions
for these flows, since vorticity is captured as part of the solution and since the dynamics
of the wake roll-up and convection is essentially inviscid. It is generally accepted that
the artificial dissipation is the cause for the flow separation at sharp trailing edges.
Moreover, as reported by Roberts [56), separation has been observed also on rounded

wing tips, a phenomenon believed to be linked to grid resolution.

The freestream Mach number and angle of attack are 0.1425 and 89, respectively.
The experimental data consists of wake and pressure coefficient measurements. The
flow around the identical geometry has been computed by Roberts [56], on two grids of
different topology, with a pressure coefficient on the wing in good agreement with the
experiments. However, his calculations showed a spurious diffusion of the tip vortex
behind the trailing edge when compared with experiments. This effect was identified as

a numerical diffusion artifact.

Because of the low Mach number, the approximation of incompressible flow is used
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for the present computations. The Eulerian solution of the flow is first used for a
validation of the incompressible flow solver by comparing the calculation to experiments.
The Lagrangian correction is then applied here in order to counteract the numerical

diffusion observed in the trailing vortex region.

The grid with a C-H structure is generated as described in Appendix A. The grid
has a C structure at each spanwise cross-section and the wing surface is discretized by a
H grid structure as shown in Figure 12.1. Figure 12.2 shows a detail of the definition of
the wing tip body of revolution surface. Each streamwise grid surface in the wake has a
H structure and presents a strong clustering in the wing tip vortex region as shown in
Figure 12.3. This type of grid in the wake has been selected instead of the O-O type of
grid used by Roberts because of the higher resolution of the wake. The mesh is slanted
in the wake so that the high clustering region follows approximately the trailing vortex
upward movement behind the trailing edge. The grid extends 2.3 chords downstream
of the trailing edge and 2.5 chords away from the wing tip in the spanwise direction.
The minimum distance from the wing to the grid outer surface is 2.5 chords. Since the
farfield boundary conditions are based on the normal velocity component through the
boundary, the external surface of the grid was inclined at an angle with respect to the

freestream in order to get a non-zero normal velocity component.

The farfield boundary conditions use the theory developed in Section 3.4. On the
farfield boundary, the freestream velocity at an incidence angle of 8° is corrected by the

amount of velocity induced by the horseshoe vortex system.

The computed pressure coefficient on the wing surface is presented at five span-
wise locations and compared with the experimental values of [78] in Figure 12.4. The

computed pressure coefficient is defined as

P — P
Cp="-22, 12.1
R (12.1)

where the subscript o refers to the freestream values, is interpolated linearly from the

grid nodes to each chosen spanwise location. Computed results and experiments are in
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symmetry

Figure 12.1: Weston wing grid 101 x 26 X 17 nodes with C-H structure shown by 2 mesh
surfaces.
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good agreement. In this calculation as in Roberts’, the predicted leading-edge suction
peak is higher near the wing root than over the rest of the wing. Roberts related this
effect to the considerable tunnel flow angularity near the wing root. Also, the present
solution gives lower leading-edge suction peaks near the wing root and higher near
the wing tip compared to Roberts’ solution. This can be attributed to a coarser grid
resolution near the wing root and a better resolution of the tip geometry. Generally,
Roberts’ calculation and this calculation both lead to an underprediction of the suction
peak over most of the wing, when comparing with the experiments. Again, this can
be related to the flow angularity in the tunnel. However, the underprediction near the
wing root is more pronounced in the present calculation since the wing resolution is
approximately four times coarser than in the solution of Roberts. The grid resolution
on the wing was traded for more grid resolution in the wake when the C-H grid type
was selected instead of the 0-O type.

A singular grid line extends from the wing tip to the outer surface corresponding to
a locally lower solution accuracy and accounting partially for the larger discrepancies
between experiments and calculations in this region. The deterioration of the computed
solution near the wing tip was also reported by Roberts and the local solution in the

tip region was shown to be very sensitive to the details of the grid and wing geometry.

The Lagrangian correction technique is applied on the Eulerian solution by placing a
marker at the center of the cells in the vicinity of trailing vortex and by integrating the
streamlines backward towards the trailing edge. An under-relaxation factor R +=1%
and a multiplication of the corrections by a factor 1% are used in order to limit the
perturbations to the Eulerian solver. The correction step is applied once each Eulerian
iteration. The integration of the streamlines is repeated each 5 iterations of the Eulerian
solver. In contrast with the computation of the flow in pipes of Chapter 11 where the
vorticity is spread over a large portion of the computational domain, the Lagrangian
correction technique shows its potential in this case since the markers need to be located
in only a small region of the flow and the CPU time allotted to the Lagrangian correction

remains correspondingly low.
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Figure 12.4: Computed pressure coefficient on wing surface compared with experiments
at five spanwise locations.
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Figure 12.5: Initial location of markers in the trailing vortex region.

Figure 12.5 shows the initial patch of markers before the integration of the stream-
lines. Each marker is indicated by a dot. The markers are placed within a ‘conical’
region roughly accounting for the trailing vortex expansion downstream of the trailing
edge. Because the immediate region behind the trailing edge corresponds to very high
gradients, attempts to correct this zone with the Lagrangian method (where vorticity
is constant over a cell) were unsuccessful. The vortex is spread over very few cells and
discretizing it by markers placed at cell centers is very inaccurate. Thus, the markers

were placed only from 0.2 chords downstream of the trailing edge.

The experimental survey of the wake provides axial vorticity, pressure coefficient
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and stagnation pressure coefficient defined as

__ Po — Poco

Cpo = , 12.2
R ¥777) (12.2)

for two stations in the wake located at 0.5 chords and 2.0 chords downstream of the
trailing edge, respectively. Figure 12.6a) shows axial vorticity contours predicted by
the Eulerian solver for the two stations downstream of the trailing edge. Figure 12.6b)
shows the axial vorticity contours for the same stations when the Lagrangian correction
is used. The experimental values of axial vorticity are reported in Figure 12.7. The
maximum computed level of vorticity is generally lower than the experimental values,
indicating that a finer grid around the wing and in the wake would be required to get
the vorticity level encountered in the experiments. However, the reduction of the wake
diffusion using the Lagrangian technique is still relevant. The experimental data show
a decrease of vorticity by a factor 1.2 between the two stations, whereas the maximum
vorticity decreases by a factor 1.5 between the two stations with the Eulerian solution
alone, an effect of numerical diffusion. With the Lagrangian correction, the maximum
vorticity level is higher at 0.5 chords downstream of the trailing edge indicating that
the numerical diffusion is reduced. This level remains approximately unchanged in the
wake. At the 2 chords station, the corrected and uncorrected maximumn vorticity levels
vary by a factor 2, indicating that the Lagrangian correction is capable of handling
large corrections of vorticity. Also the vortex core is tighter when using the Lagrangian

correction.

Figure 12.8 shows the computed pressure coefficient contours on the two stations
for the Eulerian solution and the Eulerian/Lagrangian solution. The experimental val-
ues are shown in Figure 12.9. The diffusion of the vortex is clearly seen at the 2
chords cross-section with the Eulerian solution. The experimental minimum pressure
coefficient remains approximately unchanged between the two stations. With the La-
grangian correction, the minimum pressure coefficient is closer to the experimental value
and decreases between the two stations, an effect which will be explained later. The
computed stagnation pressure coefficient is shown in Figure 12.10 and the experimental

values are reported in Figure 12.11. Again, the minimum stagnation pressure coefficient
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increases in the wake with the Eulerian solution due to numerical diffusion. The same
decreasing behavior seen for the pressure is also valid for the stagnation pressure in the

Eulerian/Lagrangian solution.

The maximum vorticity in the wake is traced as a function of the distance down-
stream of the trailing edge for the Eulerian and the Eulerian/Lagrangian solutions in
Figure 12.12. The diffusion of the Eulerian solution is seen between the trailing edge
(z/c = 1.) and the exit cross-section (z/c = 3). With the Lagrangian correction, the
maximum vorticity remains approximately constant. The roughness of the curve is due
to the vortex convecting through the grid. As mentioned earlier, the vorticity correc-
tion is not performed near the trailing edge but begins at 0.2 chords downstream of the
trailing edge.

In general the present solution shows pressure coefficient and stagnation pressure co-
efficients in better agreement with experiments than Robert’s solution. This is believed
to be due to the higher grid resolution in the vortex vicinity used in the present work.
Roberts’ Eulerian solution also showed excessive numerical diffusion in the wake with

an increase in stagnation pressure coefficient by a factor 3 between the two stations.

The minimum pressure coefficient traced as a function of the distance downstream
of the trailing edge is shown in Figure 12.13. The diffusion of the vortex leads to a
increase of the minimum value of the pressure coefficient with the Eulerian solutjon.
The Lagrangian correction leads to a very different behavior. When the correction
begins at 0.2 chords downstream of the trailing edge, the minimum pressure coefficient
first decreases because more vorticity is entrained in the vortex and the larger vorticity
region leads to a lower pressure at the vortex center. After 1 chord downstream of the
trailing edge (z/c = 2.0), most of the trailing wake vorticity has been pulled into the

vortex, and hence the minimum pressure in the vortex remains approximately constant.

The numerical diffusion of a trailing tip vortex is shown by an Eulerian calculation.

The Lagrangian correction is successful at preventing the vortex diffusion downstream of
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the trailing edge. However, the loss of vorticity is the highest in the trailing edge region
and the lack of resolution impeded the use of the Lagrangian correction at this loca-
tion. A more effective correction procedure could be obtained by using the Lagrangian
correction technique in conjunction with an adaptive grid refinement procedure, so that
the vortex resolution remains approximately the same even near the trailing edge. The
location of regions to be adapted would be indicated simply by the presence of the
Lagrangian markers. Searching for ‘features’ in the Eulerian solution woud likely be

unnecessary.
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Figure 12.6: Axial vorticity in wake for stations located at 0.5 and 2.0 chords down-
stream of the trailing edge, a) Eulerian solution, b) Eulerian/Lagrangian solution (inc.
= 1.).
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Figure 12.7: Experimental axial vorticity in wake for stations located at 0.5 and 2.0
chords downstream of the trailing edge.
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Figure 12.8: Pressure coefficient in wake for stations located at 0.5 and 2.0 chords
downstream of the trailing edge, a) Eulerian solution, b) Eulerian/Lagrangian solution
(inc. = 0.05).
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Figure 12.9: Experimental pressure coefficient in wake for stations located at 0.5 and
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Chapter 13

Conclusions

13.1 Summary

A new approach is proposed as the coupling of an Eulerian and a Lagrangian solu-
tion procedures for the reduction of numerical diffusion encountered in finite-difference
time-marching Eulerian calculations. The motivation behind this work is the efficient
numerical treatment of low non-homogeneities, such as vortex wakes, embedded in an
otherwise smooth background flow field. The coupling of the Eulerian and the La-
grangian solution techniques is intended to enhance the poor vorticity and entropy

capturing capabilities of standard Eulerian solvers.

The first part of this thesis deals with the numerical methodology used for the so-
lution of the Euler and Lagrange equations. The Euler equations are solved using a
Lax-Wendroff algorithm on an unstructured grid, and are used for compressible and
incompressible (through the artificial compressibility concept) flow situations. The
numerical smoothing is based on a second-difference for compressible flows and on a
fourth-difference (second-order accurate on distorted grids) formulation for incompress-
ible flows. The far-field, wall and symmetry boundary conditions are described in both

cases. A numerical study is performed to prove the second-order accuracy of the scheme.

The Lagrangian solution method, based on particle markers, is then described. The
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integration in time of the position, vorticity and entropy attached to the markers flowing
at the local speed through the Eulerian grid is performed using a predictor/corrector
scheme. The flow quantities required at a marker location are tri-linearly interpolated
from the cell containing the marker to the marker location. The comparative advantages
of two strategies of trajectory integration and/or marker positioning in the flow are
described for representative flow situations. The coupling sequence between Eulerian
and Lagrangian solutions is completed (and this is the key point of the procedure) by
a ‘correction step’ in which the Lagrangian markers provide information on how to
‘correct’ the spurious numerical diffusion of the Eulerian solution. As mentioned in this
work, the correction step takes place only locally, each marker influencing only the cell
where it is located. The correction procedure is described as a ‘vorticity correction’
where the vorticity attached to the marker is used to alter the velocity components at
the nodes of a cell. Additionally, an ‘entropy correction’ is described for the compressible
flow cases. The corrections are implemented as iterative procedures. The convergence

speed of the vorticity correction process is reported.

In all the test cases, the improvement due to the combined Eulerian/Lagrangian
solver is tested by comparison to the standard Eulerian solution and to the Eulerian
solution on a finer grid (where the numerical diffusion effects are lower). All combined
Eulerian/Lagrangian solutions are computed on the basic coarse Eulerian grid. Also, in
some flow cases, a comparison with experiments is performed. The CPU requirements
for the combined scheme are also compared to the CPU needed for coarse and fine grid

Eulerian calculations.

The first test case is a compressible unsteady calculation, namely a Lamb vortex con-
vection in a straight channel. The numerical diffusion effects are assessed by comparing

the vortex solutions at the beginning and at the end of the channel.
The preservation of a turbulent inlet velocity profile in a straight pipe shows the

numerical diffusion occurring near the pipe wall (where the gradients are high) with the

standard Eulerian solver. The use of the combined Eulerian/Lagrangian solver results,
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instead, in a solution indistinguishable from the exact solution.

The calculation of a swirling flow through a straight pipe, superimposed on a uniform
axial velocity, is used as a preamble to a secondary flow calculation in a bent pipe. Again,
numerical diffusion is identified in the Eulerian solution, especially near the pipe wall.
By comparison with an Eulerian solution on a finer grid, the combined scheme is shown
to be successful at reducing numerical diffusion errors. The circulation around a closed
convecting curve (which should remain constant in an incompressible inviscid flow)
is also used as an integral measure of numerical diffusion and shows the substantial
improvement obtained with the combined scheme. A basic problem of inviscid flow
calculations is also identified as a vorticity gradient augmentation, encountered in this
swirling flow case, but also present when computing secondary flows in bent pipes. This
concentration leads to a poor representation of the vorticity on the fixed size grid and
destabilizes the combined scheme. The source for the phenomenon is identified as a
‘vorticity convection process’ along streamlines, and appears in the absence of strong
source-terms for the vorticity. The intensification process is shown to worsen when using
the combined scheme because the reduction of numerical diffusion leads to a gradient
definition over fewer cells. A solution is proposed as the introduction of a Lagrangian
pseudo-diffusion term, similar in form to the true viscous diffusion term, introduced in
the right-hand-side of the Helmholtz equation. This procedure is shown to result in
a solution accurately described on the fixed grid. The change in circulation around a
closed convecting curve is shown to be still much lower for the combined scheme with

the Lagrangian pseudo-diffusion term than for the basic Eulerian solution.

A constant stagnation pressure flow in a 90° bend is investigated. The errors in
vorticity and stagnation pressure are reduced when using the combined scheme. The
errors in vorticity are shown to reduce far below the errors encountered in an Eulerian
calculation with a grid twice as fine in each direction. The errors in stagnation pressure
are shown to be corrected implicitly by the correction of vorticity and velocity (through

Crocco’s equation).
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Two secondary flow calculations in bent pipes are performed. The secondary flow
results from the imposition of a turbulent inlet velocity profile. Since this work deals
with Eulerian calculations, only the tilting/stretching of the vortex lines are taken into
account. The production of secondary flow is described, and the use of the Euler
equations (instead of the Navier-Stokes equations) is motivated for this particular flow
problem. The Lagrangian correction is employed as an alternative to expensive fine
grid Eulerian calculations in order to reduce the numerical diffusion effects. As shown
in the calculations, these effects have a strong influence on the strength and position
of the secondary flow. Because numerical diffusion and real viscous diffusion are shown
to result in different flow behaviors, the use of a combined Eulerian/Lagrangian scheme
with lower numerical diffusion is required in order to assess the fluid real viscous effects
when comparing with experiments. The limitations implied by the choice of an Eulerian
solver are also addressed. A first attempt at including the near wall viscous effects is
then reported as the introduction of a ‘law of the wall’ correction. Two bend geometries

and flow cases are tested and the numerical results compared with available experiments.

The external flow over a three-dimensional wing is the object of the last flow case.
The basic Eulerian and combined Eulerian/Lagrangian solutions are compared in terms
of numerical diffusion of the tip vortex behind the trailing edge. The numerical diffusion
is shown to be excessive for the Eulerian solution and reduced for the combined scheme.
Comparison with experiments is performed. The flexibility of the proposed method is
shown by correcting the solution selectively in the tip-vortex region, and by minimizing

the CPU required for the calculation.

13.2 Contributions

To the author’s knowledge, the coupling of an Eulerian and a Lagrangian solution pro-
cedures in three dimensions, enabling a correction of the Eulerian state vector based

on Lagrangian values and aimed at reducing numerical diffusion errors, represents an
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original contribution. The present 3-D version is based on the 2-D work of [20], but
includes the computation of the source-terms for the vorticity not required in two di-

mensions. The alternate upstream integration technique of the streamlines is also an

original contribution of this work.

The efficiency and flexibility of this new approach has been demonstrated by appli-
cation to flow cases of different characteristics. The treated examples included steady,
unsteady, compressible, incompressible as well as internal and external flow applica-
tions. The combined Eulerian/Lagrangian scheme takes advantage of both the accurate
‘elliptic’ representation of the Eulerian solution enforcing the mass requirements and
setting the pressure field and the convection capturing capabilities of the Lagrangian
solution. The contribution of this work is, therefore, the addition of built-in convection

properties to a standard Eulerian solver.

The numerical diffusion effects are quantified by comparing Eulerian solutions on
coarse and fine grids to coarse grid Eulerian/Lagrangian solutions. Using the same
solution comparisons, the CPU requirements are shown to be substantially lower, for a
given accuracy, when using the combined Eulerian/Lagrangian scheme. Also, reducing
the numerical diffusion allows one to identify the true inviscid behavior of the flow and

to assess the real viscosity effects when comparing with experiments.

In the course of this work, a vorticity gradient augmentation phenomenon has been
identified which resulted in poor vorticity representation on the Eulerian grid and desta-
bilization of the combined scheme. In order to remediate to this problem, a Lagrangian
pseudo-diffusion term has been added to the Helmholtz equation, without substantially

compromising the reduction of numerical diffusion.

In its present form, the Lagrangian correction technique consists in a set of sub-
routines which can be added a posteriori, not only to the present Lax-Wendroff time-
marching technique, but to any time-marching finite-volume algorithm for the solution
of the Euler equations on hexahedral cells. The application of the Lagrangian algorithm
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to tetrahedral cells, for example, would require the redefinition of the linear functions
within the cells.

13.3 Conclusions and recommendations for future work

As mentioned in the introduction, the different approaches taken to efficiently resolve
small size flow non-homogeneities result from a compromise between CPU/memory
requirements and solution accuracy. Any attempt at improving the solution accuracy
always ends up increasing the requirements in CPU /memory. The accuracy of the flow
solution is linked either with grid resolution issues leading to grid refinement strategies
or with the use of a priori known solutions and analytical low models correcting the
basic flow solution, or also with the use of more accurate discretization/integration
algorithms. All of these are used separately or in conjunction with each other in order
to cope with the poor solution accuracy encountered in finite-difference solutions of the
Euler (or Navier-Stokes) equations in regions of high gradients and small length scales
with respect to the background flow. All these studies were prompted by the important

influence of these regions on the overall flow solution.

The objective of this work was to obtain a more accurate solution on a fixed grid
and can also be viewed as a lowering of the CPU/memory (grid size) requirements for
a given accuracy. The comparison of the proposed approach against existing methods

has been expanded upon in the introduction and will not be repeated here.

By increasing the solution accuracy on the given grid, the proposed combined Eule-
rian/Lagrangian scheme allows for a more accurate solution of the high gradients of the
flow. Two of the main advantages of the proposed method are the flexibility by which
corrections to the Eulerian solution can be performed in only chosen areas of the compu-
tational domain, and the fact that the markers have an effect limited to the cells where

they are located. This makes the combined Eulerian /Lagrangian scheme perform better
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in situations where the flow non-homogeneities are concentrated, and less suited where
the vorticity and entropy corrections have to cover the entire domain. For example, the
correction of the relatively small non-homogeneity represented by the unsteady convec-
tion of a Lamb vortex in a channel (Chapter 7) leads to ~ 30% CPU increase over the
basic Eulerian solution. In the case of steady pipe flows, since markers have been placed
at the center of each cell, the CPU increase due to the introduction of the Lagrangian
correction is directly linked to the size of the computational domain. The introduction
of the Lagrangian correction for the preservation of a turbulent inlet velocity profile in a
straight pipe (Chapter 8) results in a 30% CPU increase. The correction of the swirling
flow of Chapter 9, in the identical computational domain, required a 33% CPU increase.
In the case of the constant stagnation pressure flow in the 90° bend of Chapter 10, with
twice as many nodes as the previous pipe cases, the increase in CPU was ~ 75%. Of
course, the particular CPU increase depends also on the flow characteristics (a high

turning of streamlines requiring more Lagrangian integration steps).

An advantage of the combined scheme is the presence of built-in convective prop-
erties, so that an a priori knowledge of the position or strength of the flow non-

homogeneities is not required.

Another conclusion to this work is that the use of the combined Eulerian/Lagrangian
scheme does not quite eliminate the need for extra grid resolution. In reducing the
numerical diffusion phenomenon, the gradients of the flow become larger and, in some
flow situations, the grid becomes too coarse to accurately support the new gradients,
as mentioned in Section 9.2. The same grid resolution issue limits the correction of the
wing tip vortex from only 20% chord downstream of the trailing edge (upstream of this
distance, the vortex was defined on too few cells to attempt a Lagrangian correction
procedure). This phenomenon is particularly acute in inviscid flow computations where

no viscous diffusion occurs to spread the non-homogeneity on more grid cells.

The use of the proposed Eulerian/Lagrangian technique in combination with a grid

adaptation should prove to be a possible solution to this problem. In addition, the
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refinement of the grid could be linked to the markers trajectories. For example, when
placing markers at the inlet of a bent pipe in the high vorticity regions near the wall, the
grid could be refined along the markers trajectories as the markers move downstream
and gather into a tight secondary vortex. The level of grid refinement could be based
on the vorticity and entropy carried by the markers. Also, this combination technique
would be advantageous in terms of CPU requirements for pipe flows where, instead of
placing markers in each cell, the selective addition of markers could be realized since the
refinement technique would prohibit many markers with largely different state vectors

from being located in the same cell during the tightening of the secondary vortex.

The use of a Lagrangian particle tracking solver in conjunction with the Navier-
Stokes equations instead of the Euler equations requires the addition of the viscous
dissipation and diffusion term in the Helmholtz equation. This is not viewed as a
main roadblock since a similar term has already been implemented in this equation
when using a Lagrangian pseudo-diffusion along the markers streamlines in Section 9.2.
As mentioned by Drela in [20], the main problem here is to account for turbulence (as
suitable models for turbulence do not exist for vortex wakes). Fortunately, the dynamics
of vortex wakes is mostly inviscid. However, in the case of a secondary flow calculation,
while the combined Eulerian/Lagrangian solver gives realistic results near the entry of
the bend (or bends of small turnings), the modeling of the migration of the viscous
effects towards the pipe center would bring the computed results closer to experiments
for high degrees of turning. In this case, the Lagrangian technique would not be used
near the pipe walls since the resolution provided by a Navier-Stokes ‘grid ensures accurate
solution of the viscous stresses near the walls. Still, the Lagrangian technique would
be useful near the pipe center where the grid resolution is comparatively coarse for the

accurate solution of the secondary vortex.

The Lagrangian equations defined in Chapter 4 are not valid through a shock. The
implementation of the combined Eulerian/Lagrangian scheme for shock flows is feasible
if the markers do not cross the shock region. Therefore, the Lagrangian state vector has

to be reinitialized (using the Eulerian solution) from one side of the shock to the other.
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Since the correct jump conditions across the shock are ensured for any conservative Eu-
lerian scheme, this procedure should provide the markers with correct values of entropy
and vorticity. Also, as mentioned in [20], the exact location where the markers have to
be stopped and reinitialized should not be critical since the usual grid refinement used

in Eulerian solutions near the shock region will ensure a locally accurate solution.
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Appendix A

Mesh Generation

The meshes used in this work are generated by solving a set of partial differential
equations (PDE) of Poisson type using an iterative procedure, see Reference [75] for
instance. A boundary-conforming procedure using a structured mesh is employed which
consists of mapping the three-dimensional physical domain of Cartesian coordinates
(z,¥, z) onto a cubic computational domain of coordinates (£,7,{). The first step in
defining the transformation is to specify Dirichlet and/or Neumann conditions on the
limiting surfaces of the physical region; those boundaries being represented by a constant
£ or 5 or { in the computational domain. In the elliptic partial differential method, the

distribution of the interior grid points is then governed by the following Poisson system

E:z+£yy+£zz = P(£9"7’<)
Nez t Nyy + N2z = Q(E’Th()

C:::: + ny + sz = R(Ea 77,(), (Al)

where P, Q and R are source terms that can be selected to control the mesh points
distribution. Since it is much easier to solve a system of PDE on the uniformly spaced
grid of the computational domain, it is useful to transform system (A.1) onto the com-
putational space. This is achieved by interchanging the roles of the dependent (£,7,()
and independent (z,y, z) variables in Eqgs. (A.1). This yields an elliptic system of quasi-

linear equations that can be written in the vector form [65]

a11(Fee+97¢) + az2(Fon+97) + ass(Fee + A7) + 2(a127¢n+a137g¢ +azsfne) = 0, (A.2)
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where ¥ = (z,y, z) is the position vector,
3
a;; = Z Arn.iAmj
m=1

and A,,; is the cofactor of the (m, ) element in the following matrix

Te Tnp ¢
M=1y v ¥
Z Zm %
The forcing functions ¢, 1 and A serve to control the interior mesh points distribution,

2 2 2
=JP ¢=JQ /\=JR

k) b

a azz as3
where
d(z,y, z) . o
J = ———— = det(F¢, Tp, T¢)-
3, m,0) ~ el

Given a proper choice of the source terms P, Q and R, this transformation defines a
one-to-one correspondence between the two spaces. The source terms are automatically
evaluated in order to provide a control of the cell size and the skewness at the chosen

domain boundaries according to the general procedure described by Sorenson [66].

Depending on the flow cases, two types of mesh generation strategies are used in
this work. For internal, pipe flow computations, a 2-D version of the elliptic PDE
solver is used to generate the cross flow grid planes, i.e. surfaces approximately normal
to the main flow direction. These mesh planes are then arranged in the streamwise
direction along the bend, see Figure A.l. Notice that due to the symmetry of the
problem, only half of the pipe geometry is actually needed. The 2-D mesh plane is
defined by a mixed O-H topology, see Figure A.1, with the O mesh located close to the
pipe wall, allowing for a good control of the spacing and orthogonality at this boundary.
The mesh singularity at the center of the pipe is removed by filling this part with an
H-type grid. The connection between the two types of grid generates two field nodes
that are surrounded by only three cells instead of four. As discussed in Section 3.3

this leads to a minor change in the numerical algorithm. However, this mixed grid
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1 ih

Figure A.1: Cross-sectional view of grid and distribution of cross-sections along the
pipe.

topology provides much more flexibility in terms of nodes distribution than a single O-
or H-type. Also this removes any mesh singularity from the pipe boundary and the
symmetry plane. Notice that the two singular field nodes are allowed to move during
the iterative solution procedure according to the number of nodes allocated for the H
and O parts, and the grid control parameters set at the wall and the symmetry surface.
In fact the position of these singular nodes is computed as an average of the position of

the three surrounding nodes, thus enforcing identical cell volumes in this area.

For these pipe geometries, grid control is applied on the solid wall as well as at the
symmetry surface. This provides a good control of the discrete representation of the
boundary-layer velocity profile near the wall. Grid control at the symmetry surface is

required in order to get a good representation of the secondary vortex generated close

232



to the inside wall. This vortex is then moving along the symmetry plane due to the

presence of its image and the wall.

For the wing flow computation of Chapter 12, the full set of 3-D elliptic equations are
solved to define the interior domain nodes distribution. The initial distribution of nodes
is obtained by setting up the wing cross-sectional planes perpendicularly aroung the
airfoil. As an option, the elliptic procedure can also be performed in two dimensions for
each of the cross-sections, to define a smoother initial condition for the three-dimensional
elliptic grid solution. For this case a C-H type of mesh is used. The C part is required
for a good resolution of the strong gradients at the leading edge and the wake flow. The
distribution of the nodes on the wing surface is established first using multiple cubic
spline functions along the span and the chord. This allows to cluster the nodes near
the leading and the trailing edge as well as close to the wing tip, see Figures A.3 and
12.2. A set of mixed Dirichlet/von Neumann boundary conditions are used to define the
symmetry plane and the outer surface. Control of the spacing and the orthogonality is
applied on the wing surface, in the wake portion (i.e. from the trailing edge to the exit)
and also on the outer surface. The use of a symmetric profile allows for the generation
of only one half (upper or lower) of the mesh, which is then duplicated and finally
tilted upwards from the trailing edge to the exit to follow approximately the upward
movement of the wake and trailing vortex, see Figure 12.3.
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Figure A.2: C-H mesh structure shown by different mesh surfaces.
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chord with clustering in the direction perpendicular to the wall and near the tip (the
derivatives are also prescribed using the source-terms).
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Appendix B

Volume and area calculations

This appendix presents the computation of the cell volumes, the faces area and the

volumes associated with the nodes which are required by the Lax-Wendroff algorithm.

The volume V, of a cell is computed as the sum of the volumes of the five constituent

tetrahedra shown on Figure B.1.
Ve = Vsezr + Viz14 + Vigra + Varas + V5274, (B.1)

where the indices refer to the nodes constituting each tetrahedron. The volume of a
tetrahedron is found through a determinant constructed by the tetrahedron’s vertices.

. For example, the volume of tetrahedron 5627 is found as

1 25 y5 25
1 z6 y6 =26
1 z2 y2 22
1 =27 y7 27

V5627 = -

The area of a cell face is given by half the cross product of its diagonals. The surface

vectors are chosen to point outwards and are written as

o 1 — — — —
51 = 5(1’3 - 7‘6) X (1‘7 - 1‘2)
= 1 - — - —
S5; = 5(7'8—7'1))(( 4 — 75)
1. . L
5’3 = 5(1‘7 - 1‘4) X (7‘3 - 1‘8)
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& 1 - — — —
= 1 — - — —
55 = 5(1‘7—7‘5)X (’I’g—’l‘e)
= 1 — — — —
S¢ = 5(7‘3—7‘1)X (7 — 74)

Figure B.1 shows the vector surface numbering 51 to Se.

Sa

1 2
524—— ........... ——’Sl
8 7
Se
4 3
S3

Figure B.1: Dividing of cell into five tetrahedra and surface vectors numbering definition.

The Lax-Wendroff algorithm also uses volumes associated with nodes. A ‘node
volume’ is defined at node n as the average of the volumes of the eight surrounding

cells.

1
Va=3g Y Veell: (B.3)
scells

In the case of nodes lying on boundary surfaces like a wall surface or an inlet/exit
surface, only four cells or less (corner nodes) contribute to the volume associated with
the node. For a wall surface case, this is taken into account when applying the wall

boundary condition as mentioned in Section 3.5.
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Because of the symmetry condition, the volume associated with a node lying on
a symmetry surface is found by doubling the node volume contribution from the four

existing boundary cells.
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Appendix C

Stability analysis

In order to perform a stability analysis on the Euler equations, the system is first recast

in primitive form and computational coordinates.

C.1 Primitive form of Euler equations in computational

coordinates

Starting from the Euler equations in conservative form and Cartesian coordinates

oH _

oU F
— 4 9F 3G + =0, (C.1)

3 "9z T oy T oz

and applying the chain rule derivation to the above equations gives

oU OF oF oF G oG G 0H 0H OH
Et‘+a_££z+a_nnz+a_CC:+a_£Ey+'a;ny+a_CCy+7£'£z+’a—nnz+§Z‘Cz =0, (C.2)

where index . is short for derivative with respect to z, and so on for y and z. J
is the Jacobian of the transformation from the (z,y, z) physical space to the (&,m,¢)

computational space and is defined as

I =ze(ynze ~ Yozn) ~ Ta(Yeze — yeze) + 2¢(yezn — ynze)- (C.3)
The metrics of the transformation are

_ YnE YA — _InZ —ZT¢A _ In¥¢ — T¢Yn C.4
f = BE_WA T ()
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YeZe — YeZ Teze — Tz TeYe — Ty
€<¢ Cf,n__f( (%€ ,,7:5( (6, (C.5)

= = 7 v = g " 7
C:L’ — yfz"l ; yﬂzf , Cy — _mfzﬂ ; $,-,Z£ , Cz — zfyﬂ ; znyt . (0.6)
Noticing that
;%—(yn% T 3%(1/5% - yeze) - %(yezn —ynzg) = 0,
333(%% - T(z) - 307,(%2( -zczg) - 36?(35% -znzg) = 0,
B(ensc - zeva) — Foleevc -2y — Frleewn—zave) = O,

the Euler equations recasted into computational coordinates are

JQE + oF' + G’ + oH'
at  O¢ on a¢

) ;] b
- F _52(%,2( — Y¢zn) - E;(ng( - yeze) - %(yez,, - ynzé)]

=0

) d 0
- G LEE(z"Z‘ - z¢2) — a—n(zeZc —zezg) - 3—C(®‘£Zn - ”nzf)}

. —

=0

o d a
H ['(Z)E(znyﬁ - Z¢Yy) — 5;’(2694 —z¢ye) - 3—C(z£y" - Enys)] =0, (C.7)

/s

. o

=0

where F',G', H' are the contravariant fluxes defined as

F' = (wnzc—wzm)F — (zq2¢—2¢2)G + (zoy¢ — 2(¥n)H,
G = —(yez( - y(25)F + (252( - z(Z£)G - (:cfy( - ::(ye)H,
H = (Vezn — ynze)F = (2Tezq — 20z )G + (zeyn — znye)H.

The following relations will be used in the next section.

o= ulynz¢ —Y¢zm) — v(Tpz¢ - Tezm) + w(Za¥e — Z¢Yn)
ra = -—u(yeze —ycze) + v(zeze —zeze) — w(zeye — TeYe),
r3 = u(Yezn —UnZ) — V(Tezq—2znze) + w(TeYn — 2n¥e)

whose derivatives are

oy _ Ou

0 0
5 = gl wm) = gpleazc = 2z + Gl — s (C8)
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drs Ju dv dw

B T Taper —uer) + 5 (2eac — 2eze) — 5o (zeye — zeve),  (C9)
or ou v ow
B_Ca = ac(yfzn Ynz¢) — C(zfzn = Zqz¢) + 3_((1’6‘/77 — Tyye)- (C.10)

C.1.1 Primitive form: incompressible flow

In the case of an incompressible flow, the state vector U and the contravariant fluxes

F'.G', H' are

p* 637‘1
u ru + p*(ypze —
U= Copo | TP (Yn2¢ — Yezn) ,
v 0 — p*(znz¢ — T 2y)
w 1w — p*(Tn¥e — Z¢Yn)
c2ry c2rs
o= | T2 P veac - wez) R I *(Yezn — ynz¢)
T2v + p*(Teze — T¢z¢) r3v — p*(Tezy — Ty2¢)
raw — p*(Zeyc — T¢ye) 3w — P*(Z¢yn — To¥e)
The continuity equation is
Bp‘ <61‘1 37'2 61'3)
J—=- C.11
a1 9t T an T a¢ (C.11)

where the RHS is found from Equations (C.8) to (C.10). The first component of the

momentum gives

J@— 1‘@ T@—T@ (61‘1+81‘2+3T3)
at — ~ teg fanp *ac "\ a¢ ac¢
op* op*
- (ynz¢ - 9 T (vez¢ - Zf)a—c

9
-7 (a—g(yﬁ( ~ ¥ -5 2 (vt - wcze) + 3C(yezn —ynZe))-(C-lz)

-

=0
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Similarly, one finds for the two other components of the momentum equation

J.@B—— — T?z_r@_rég_v<%+§2+.aﬁ)
Pt = 19~ %an  "%5¢C ot " on ' B¢
op* op* op*
4 (o = 2z) g — (e~ 202e) 5+ (@30 = 2020) 5 (C13)
J?ﬂ— — r—aﬁ_ra_w_r.?g_w<% %+3T3)
Pt ~ Y9 " "aq T 8¢ 3¢ T om T 3¢
ap* 3

P p* dp*
(Za¥¢ — 2¢Yn) 9t + (zeye — T¢ye) 9 (zeyn — znye)a—c- (C.14)

Collecting Equations (C.11) to (C.14) gives the Euler equations modified by the artificial

compressiblity concept and written in primitive form and computational coordinates

p
U . (. 0U  8U  , 8U\ _ |
_3_t—+J (A1¥+A23 +A33C)_0’ where U= . ,
w
0 2(ynz¢ — Yezn)  —CH(znz¢ —z¢z)  ch(Zn¥¢ — T¢Yn)

(Unz¢e = Yezn) w(¥nz¢ —Yezn) + 71 —u(Tnz¢ — 2¢2y) u(ZnY¢ — 2¢Yn)

A]_ =
—(znze — T¢zn)  V(Unz¢ — Y¢zn)  —V(Znz — Zezg) + 1 V(TpYe — T¢Yn)
(Zn¥e — 2¢¥n)  w(Ynz¢ — Y¢2n) ~w(Znz¢ — 2¢zn)  w(ZnY¢ — TeYn) + 11
0 —c2(yeze — yeze)  c(meze —z¢ze)  —ci(zeye — Teve)
A= | T e - yeze) —ulveze —yeze) + 2 w(zez — 2¢%) ~u(zeyc — 2¢¥e)
2 —
(zeze — 2cze)  —v(vezc —yeze)  v(Teze — z¢ze) + 12 —v(Teye — Teye)
—(zZeye — z¢ye)  —wlvezc — Yeze) w(zeze — 2¢zg) —w(zeye — Teye) + T2
0 2(Yezn — Unze)  —Ci(zezn — TnZ) c2(zeyn — znye)
Ay = (Yezn — Unze) w(Yezn — Yn2¢) + 13 —u(Zezy — Tn2) u(Z¢yn — TYe)
~v(Tezy — Tnze) + 73 V(TeYn — ToYe)

—(zezn —~ Tnze) v(Yezn — Yn2¢)

(zeyn — 2a¥e)  w(Vezn — Unze)  —W(Tezn — Zp2)  W(BeYn — Tn¥e) + 73

242



C.1.2 Primitive form: compressible flow

In the case of a compressible flow the state vector U and the contravariant fluxes

F',G', H' are

o) ( o ) ( pra
pu priv+ p(Yaz¢ — y¢zq) prau — p(Yeze — Ycz¢)
U=| pv |, F=| priv—plengz —z¢zq) |» G =| prov+ Plzeze — T¢z¢)
pw praw + p(Zqye = 2(Yn) prow — p(Zey¢ — 2Ye)
\ pe | \ r1(peo + p) r2(peo + p) )
( pr3 )

prav + p(Yezn — Ynz¢)
H' =1 prev—p(zezy — znz¢)
PTaw + p(Zeyn — TnYe)

\ raleeotr)
The continuity equation is
dp 0 7] 0
o = _6_£(pr1) - a—n(Prz) - a—C(Prs)

_ dp dp ap (31‘1 % %)
= —1'13—6—1'25; a( a{ + + a( (C°15)

The first component of momentum is

Ou _ 0 dp
Tog = 1(5@)-u50 (C.16)
Replacing the expression for §(pu)/dt and using Equation (C.15) for dp/dt, the first

component of momentum becomes

102 = o B o 2 OOz ez~ veze) — Py —vaze).

(C.17)
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Similarly, one finds for the two other components of the momentum equation

v ov ov v dp
Jpat ALY THRLEr malitr Tl 35(%% zczn)——(zeZc ~zcze)+ C(Zezn—we),
(C.18)
ow ow ow 6w Jdp dp Jdp
Ty = —Phige P, prs—a?—66(cnyc—mcyn)+an(zey<—w<ye)—aC(zwn—rnye)-
(C.19)

By taking the time-derivative of the equation of state we get

ou dv ow

1 dp _ 1 dp )
ST ( (E)—z(u + v? -J;-w)a —pum = PG — PSS ) (C.20)

Replacing the expressions for 3(pE)/8t and using Equations (C.15) and (C.17), (C.18)
and (C.19) we get

Ja_p _ dp dp dp (87'1 01‘2 + %)

3t —7'1;9—6- - 7'257; - 7‘33—( T aC (C.21)

Thus, the Euler equations for a compressible flow written in primitive form and in

computational coordinates are

(s)
u
av, _ av, av, oU,
a—;+J 1 (Al—a?-i-Az a +A3-Y) =0, where Up= v s
w
\ P )
(1 Plunzc — Yezn)  —p(Znz¢ — 2¢2n)  P(TnY — T¢Yn) 0 )
0 B! 0 0 %(y,,zc - Y¢zn)
Ar=10 0 r 0 —2(2nz¢ — 2¢2m) |
0 0 0 r1 2 (Zn¥c ~ 2¢vn)
\0 7P(¥nz¢ — Yczn) —YP(Tn2¢ — Z¢2n) YP(20Y¢ — Z¢Yn) ™ )
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Azz

A3=

C.2 Stability

The discretization following Ni’s method gives

U;“H = Ul + Atpepinpe (Ar1pcpnde + Azpcpebn + Aspnpebe) Up +

1
§At2 (Axpiepnbe + Azpigpiebn + Aspnpebe)? U,

where the operators § and u are defined by

6eUsje =

Ui =

peUije =

BeUije

Ui+§jk - Ui—%jk’ onUsjr = Uij+-;—k - Uij—%k’
Uijk+§ - Uijk-‘;’

1
( +iie U)ol = E(Uij+§k + Ui 1)

( Jk+l Jk_-)
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(r, —p(yezc — yeze) plzeze — z¢ze)  —plzeye — 2¢¥e) 0 )
0 2 0 0 —2(vez¢ — yeze)
0 0 Ty 0 %(:c{z( —z¢ze) | >
0 0 0 72 ~5(zeye — zve)
\0 —7P(vezc — yeze) TP(zez¢ — 2cze) —1P(Teye — ZeYe) 72 ),
(rs p(vezn — Unze) —p(eezn — nz¢) p(2evn — Zabe) 0 )
0 r3 0 0 %(yfzn — YnZ¢)
0 0 T3 0 —%(%Zn - Zn2¢)
0 0 0 T3 %(:cey.,, — Z¥e¢)
\0 1P(Yezn — YnZe) —7P(”£zn — zn2z¢) TP(TeYn — To¥e) r3

(C.22)

(C.23)
(C.24)

(C.25)

(C.26)



Considering a wave-like solution Up = U, e (3% +kf24mf3) the amplification matrix G

is

6 7} 6.
G(601,62,03) = I — 21 cos 71 cos -52- cos 73‘4123 + 2At2A2,,, (C.27)
where
6. 0 [} 6 6
A3 = Ay sin%cosizcos73 + A, sin-iz-cos-él—cos%a--# Az sin—23-cosf2lcos %2-
(C.28)
Defining
D = At (51A1 + 5045 + 83A3), (029)
6 6 6 6 6 7} 6 é [}
s = \/(sin 71 cos ?2 cos —231)2+(cos ?1 sin ?2 cos ?3)2+(cos —21- cos ?2 sin —:—;)2, (C.30)
sin & cos & cos & cos & sin & cos & cos & cos L2 sin%
s = 2 32 2 g, = 2 52 - 2 32 2, (C.31)

with the property s? + s% 4+ s3 = 1, the amplification matrix G can be written as
. 01 02 03 2 "2
G(6,,602,03) =1 -2is cos?cos?cos?D—Ls D*. (C.32)

If Ap is an eigenvalue of D, the corresponding eigenvector is also an eigenvector of G

with an associated eigenvalue

Ag=1-2¢s cos 0—21-cos % cos 0?3/\13 — 2s2Ap2. (C.33)

If Ap is real and |Ap]| < 1, then

012 022 032
Agl? = 1-4s522% |1 - 5223 — cos— cos— cos —
2 2 2
9 2 2 2
< 1-4s22} (1—52-—cos?1 cos%z— cos—923
6,2, 6,2 6,2 6,2, 6,2, 6,2 6,2 0,2 652
= 1—-432/\% (sin?1 sm-2—2 cos—é:‘1 -{-cos?1 sin—22— sin—2:—;- -+-sin?1 cos?2 sin;s
< L

246

)



Thus the condition Ap < 1 is sufficient (but may be not necessary) for stability.

C.2.1 Stability: incompressible flow

Let .
r = 7157+ 7387 + r383, (C.34)
a = (¥nz — Yezn)$1 — (Yez¢ — Ye2e)s2 + (Y20 — YnZe)S3, (C.35)
b = —(znz — z¢zm)s1 + (2e2¢ — 2¢2¢)s2 — (220 — Tn2¢)s3s (C.36)
d = (znyc — zcye)s1 — (zeyc — z¢ve)s2 + (Teyn — 2a¥e)sa- (C.37)

Using Equation (C.29) and the previous definitions for r,a,b and d, the matrix D is

written as
0 cla c2b cid
a ua+r ub ud
D =
b va vb+r vd
d wa wb wd+r
The eigenvalues of D are
-—AJ—t (r, 7, 7+ /P2 4 c2(a? 4 b2 +d2), T — /12 + c2(a? + % + d2)> . (C.38)

A conservative estimate for the maximum eigenvalue is

At - —
ADmee £ 5 (\/r%’ Tyt d@+b + d’)) , (C.39)

where the value of r has been maximized by 1/r2 + 7% + r3 since s? + s5 + s3 = 1, and

the values of a2, b?,d? have been maximized by '&2,32,32 with

@ = (U2 — Yezm)® + (Weze — Yeze)® + (¥ezn — Ynze)s (C.40)

B = (znz¢ — 2¢zm) + (2ezc — 2¢2e) + (2620 — 2n2¢)s (C.41)
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—=2
d" = (zqyc — zeye) + (zeye — zcye)? + (Teyn — zoye)’ (C.42)

Thus a sufficient criterion for stability is

J

At < .
I I A I TS A 2

(C.43)

C.2.2 Stability: compressible flow

From Equation (C.29) and using the definitions for r,a,b and d, the matrix D is

(r pa pb pd 0O \
r 0 0 a/p
0 T 0 b/p
0 0 r dfp

ypa ypb ypd 1 )

o o o o

The eigenvalues of D are

%('r, 7, 7y T+ cVa? + b2 4 d2, r—cva2+b2+d2), (C.44)

where c is the speed of sound ¢ = \/yp/p. A conservative estimate for the maximum

eigenvalue is

At
ADmee S (\/r% +ri+ri+cevar+b+ dz) , (C.45)

where the value of r has been maximized by {/r? + 72 + r since s? + s2 4+ s2 = 1. Thus

a sufficient criterion for stability is

At < J (C.46)

- r%+r§+r§+cVa2+bz+d2.
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Appendix D

Brute force location of markers

This type of marker location in the whole domain is used for the initial location of the
markers or as a last resort search when the marker has moved over a distance larger
than one cell from its previous position and the usual search in the neighbouring cells
has failed. First, nearly all cells are disqualified by eliminating the cells whose ranges
of nodes coordinates do not encompass the marker coordinates. Each remaining cell is
then divided into 6 tetrahedra Tis45, Tsses, T2456, T2346, T3468, T3678 (the indices refer to
the node numbering defined in Appendix B). A search is performed in each tetrahedron
by expressing the marker position vector 5 defined on Figure D.1 in the local coordinate

system (€}, €, €3) as g = a€] + €, + y€3 where a, 3,7 are found by the relations

€2X€3 ﬁ €1 X €3)-p -.1)(52 ﬁ
Q:(.._—.‘."l_..‘a ,3=—(.‘1 ..3) fa 7=(.. ..)_. (D.1)
(1X€2)'€3 (1)(62)'63 (1)(62)6

The necessary conditions for the marker to be located in the tetrahedron are
a>0, B>0, 720, a+B+7<L. (D.2)
€1
€
€3

Figure D.1: Local coordinates in tetrahedron.

249






Appendix E

Newton-Raphson procedure

E.1 Marker location in cell

The (£,7,() coordinates of a marker located at (z,y,z) in a given cell are found by
solving the implicit system

8

T = Z Nk(e’ 7 C) Fk (El)

k=1

by a few Newton iterations. Or, in shorthand notation,

91(&,m,¢)

92(67 yt C) = 5(6) =7~ Z Nk(a) -‘k = ﬁ (E2)
k=1

93(&m,¢)

Starting from an initial guess & and using a Newton-Raphson iteration, the location

of the marker in (£,7,() is found as

g(a) = g(do) + [%] . AG. (E.3)

The Newton-Raphson procedure consists then in solving the following equations itera-

tively until convergence is obtained, that is when A& — 0.

ﬁ(ao), &0 = ao + Aéa (E4)

- =1
Aa':_[agJ

9a

&o
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The first guess for &, is set to § so that the search begins from the cell center. In practice
only three iterations suffice to determine the location of the marker with acceptable

accuracy. The Jacobian matrix is obtained from Equation (E.2) as
8
ONk 7
Z:, 35 Tk (E.5)

Using Equations (5.1) for the definition of the tri-linear functions N, to Ng gives

08 _ 1 [(1- n)(1 - O)(F — 72) + (1 + O)(Fs — 7))
+( + (1= O)(Fe — 7a) + (1 + Q)7 — 7)),

L (1= €)@ - O - o) + (14 C)(Fs — 7))

(1+&)@

(1-

(

5
||

_‘ +(1+ (1 - OF2 — 73) + (1 + ()(F6 — 7)),
g% = & (1~ &)((1 - n)(F1 = 7) + (1 +n)(Fa — 75))
+(1+ E)((1 = 9)(F2 — 76) + (1 + n)(Fs — 77))]-

E.2 Metrics derivatives at marker location

The terms (9&/d7) required for the evaluation of the derivative of the function f at the

marker location in Equation (5.8) are obtained by deriving Equation (E.2) as

%;_3_;. (E.6)
Hence
e | © 971t (07
O B L e 4 (&)
Gz G ¢

where the indices ¢,y ,¢ are shorthand for 8/8¢,0/8n,8/8¢. Or explicitly

€ = 92093 ~ 9293, __9log3¢ - 9leg3n . _ 9l,92¢ — 91¢g2,
x — ] Y J z = b

b

_92¢93¢ — 92¢93¢ _ 9leg3¢ —gl¢g3e _ _91e92¢ —g1¢g2¢
y My= sy N2 = )

x =

T T
(o= 9293, — 92493¢ . _ _ 9193y —glng3e . _ g1¢92n — glng2¢
x T y Yy T ) z 7 ’
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where

J = —91¢(92,93¢ — 92¢93,) + 91,(92¢93¢ — 92¢93¢) — 91¢(92¢93, — 92,93¢). (E.8)
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Appendix F

Change in Circulation Due to Diffusion

The loss in circulation due to diffusion can be expressed by writing the convective

change in circulation around a closed curve as
Dt (f* dr) }f_—(v dr)=fa-d%+}£%’-d?=y{%’i & (F1)
N e’

Using the momentum equation to substitute for %’t—’, the convective change in circulation

is

%E:f( Vpp )-dr+ (979) - dr. (F.2)

By using Stokes theorem, the first integral is expressed as
v ~ 1 .,
f-=2)-dr = $(-v(2)x Vp)- d5, (F.3)

which gives a zero contribution for incompressible flows. Transforming the second inte-

gral of Equation (F.2) with

Vo= -V x (Vx#)+V(V-8)=-Vxa, (F.4)

=0
the convective change in circulation due to viscous effects in an incompressible flow is

written as

% = -uf(v X @) - dr. (F.5)
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